STAT 513 fa 2018 Exam I (take-home)

Karl B. Gregory

assigned: Tuesday, Oct 2nd, 2018
due: Thursday, Oct 4th, 2018

Instructions:

- Looking at course notes IS allowed.
- Working with others IS NOT allowed. Asking a friend to help you puts the friend in the uncomfortable position of wanting to be nice but not wanting to break a rule. I recommend not doing that to your friends, because friendships are more important than exam grades.
- Write solutions on blank sheets of paper and turn these sheets in WITH A BLANK SHEET ON TOP (to cover answers) which has only your name on it. You do not need to turn in a copy of the exam itself.
- I expect answers to by very neatly written, since you have the time. Partial credit will be given only for legible work.

The table below gives some values of the function $\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$:

$$
\begin{array}{c|cccc}
z & 1.282 & 1.645 & 1.96 & 2.576 \\
\hline \Phi(z) & 0.9 & 0.95 & 0.975 & 0.995
\end{array}
$$

Let X_{1}, \ldots, X_{n} be a random sample with likelihood function $L\left(\theta ; X_{1}, \ldots, X_{n}\right)$. Then for hypotheses of the form $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$ the likelihood ratio takes the form

$$
\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)=\frac{L\left(\theta_{0} ; X_{1}, \ldots, X_{n}\right)}{L\left(\hat{\theta} ; X_{1}, \ldots, X_{n}\right)}
$$

where $\hat{\theta}$ is the maximum likelihood estimator of θ.

1. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Normal}(\mu, 1)$ distribution, where μ is unknown. A researcher plans to test $H_{0}: \mu \geq 5$ versus $H_{1}: \mu<5$ with the test

$$
\text { Reject } H_{0} \text { iff } \sqrt{n}\left(\bar{X}_{n}-5\right)<-1.96
$$

(a) Give the size of the test.

Solution: We have $z_{0.25}=1.96$, so the size is 0.25 . This can be shown by the following, where $\gamma(\mu)$ is the power function:

$$
\sup _{\mu \geq 5} \gamma(\mu)=\gamma(5)=P_{\mu=5}\left(\sqrt{n}\left(\bar{X}_{n}-5\right)<-1.96\right)=P(Z<-1.96), \quad Z \sim \operatorname{Normal}(0,1)
$$

which is equal to 0.025 .
(b) Make a sketch which gives the shape of the power curve, indicating its height at $\mu=5$.

Solution: Sketch should show a decreasing function taking values in $[0,1]$ and crossing through the point $(5,0.025)$.
(c) Give an expression for the power $\gamma(\mu)$ at any value of μ.

Solution: The power $\gamma(\mu)$ of the test is given by

$$
\begin{aligned}
\gamma(\mu) & =P_{\mu}\left(\sqrt{n}\left(\bar{X}_{n}-5\right)<-1.96\right) \\
& =P_{\mu}\left(\sqrt{n}\left(\bar{X}_{n}-\mu+\mu-5\right)<-1.96\right) \\
& =P_{\mu}\left(\sqrt{n}\left(\bar{X}_{n}-\mu\right)<-1.96-\sqrt{n}(\mu-5)\right) \\
& =P(Z<-1.96-\sqrt{n}(\mu-5)), \quad Z \sim \operatorname{Normal}(0,1) \\
& =\Phi(-1.96-\sqrt{n}(\mu-5)) .
\end{aligned}
$$

(d) Which of the following numbers, when rounded up, is equal to the smallest sample size under which the test will reject H_{0} with probability at least 0.90 for all $\mu \leq 4$? Hint: You must do some calculations involving the power function. No points will be awarded if you do not show your work, even if you select the right answer.

Solution: We want the power to be greater than 0.90 for all $\mu \leq 4$. Since the power function is decreasing, it will suffice to ensure that $\gamma(4) \geq 0.90$. The smallest sample size which ensures
this is found by taking the smallest value of n which satisfies the following:

$$
\begin{aligned}
\gamma(4) & \geq 0.90 \\
\Longleftrightarrow \Phi(-1.96-\sqrt{n}(4-5)) & \geq 0.90 \\
\Longleftrightarrow-1.96-\sqrt{n}(4-5) & \geq \Phi^{-1}(0.90) \\
\Longleftrightarrow-\sqrt{n}(4-5) & \geq \Phi^{-1}(0.90)+1.96 \\
\Longleftrightarrow \sqrt{n} & \geq z_{0.10}+1.96 \\
\Longleftrightarrow n & \geq(1.282+1.96)^{2} .
\end{aligned}
$$

A. $(1.96+2.575)^{2}$
B. $(1.96+2.575)^{2} /(5)^{2}$
C. $(1.96+1.282)^{2}$
D. $(2.575+2.575)^{2} / 4$
E. $(1.96+2.575)^{2} /(\sqrt{4})^{2}$
F. $(1.96+1.96)^{2} /(\sqrt{5})^{2}$
G. $2^{2}(1.96+1.282)^{2}$
H. $(1.96-1.282)^{2} / 5$
I. $2^{2}(1.96)^{2} / 5^{2}$
J. $2^{2}(1.282)^{2}$
(e) Assuming that the correct sample size from the previous part is used, sketch the power curve of the test; include vertical lines positioned at $\mu=4$ and $\mu=5$ and horizontal lines positioned at the heights 0.90 and 0.025 .

Solution: Sketch should show a decreasing function taking values in $[0,1]$ and crossing through the point $(5,0.025)$ and approximately crossing through the point $(4,0.90)$.
(f) Suppose that a random sample of size n results in $\sqrt{n}\left(\bar{X}_{n}-5\right)=-2.65$. In which of the following intervals does the p-value lie? Hint: Consult the table of values of the standard Normal cdf $\Phi(z)$. No points will be awarded if you do not show your reasoning, even if you select the right answer.
A. $(0, .005)$
B. $[.005, .01)$
C. $[.01, .05)$
D. $[.05, .5)$
E. $[.5,1)$
(g) Suppose that a random sample of size n results in $\sqrt{n}\left(\bar{X}_{n}-5\right)=2.65$. In which of the following intervals does the p-value lie? No points will be awarded if you do not show your reasoning, even if you select the right answer.
A. $(0, .005)$
B. $[.005, .01)$
C. $[.01, .05)$
D. $[.05, .5)$
E. [.5, 1)

Page 4
2. Let n^{*} be the smallest sample size required to detect a deviation as small as δ^{*} from the null with probability at least γ^{*} using a test with size α. Fill in the blanks:
(a) For _smaller (larger/smaller) δ^{*} a _larger_(larger/smaller) n^{*} is required.
(b) For larger (larger/smaller) γ^{*} a larger (larger/smaller) n^{*} is required.
(c) For _smaller_(larger/smaller) α a larger_ (larger/smaller) n^{*} is required.
3. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Bernoulli}(p)$ distribution, where p is unknown, and suppose it is of interest to test

$$
H_{0}: p \leq 1 / 4 \text { versus } p>1 / 4
$$

Power curves of the test

$$
\text { Reject } H_{0} \text { iff } \sqrt{n}\left(\hat{p}_{n}-1 / 4\right) / \sqrt{1 / 4(1-1 / 4)}>z_{\alpha}
$$

are shown under four settings, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , which correspond to different values of α and n.

Answer the following by looking carefully at the power curves. Explain answers to recieve credit!
(a) Which settings have $\alpha=0.05$?

Solution: They are A and B: At $p=1 / 4$, the heights of the curves under A and B have the height 0.05.
(b) Between settings C and D , which has the smaller sample size n ?

Solution: It is C : The value of α is the same under C and D , and the power curve under D climbs more steeply, so the sample size under D must be greater.
(c) Which of the four settings has the largest sample size n ?

Solution: It is D: For settings with the same value of α, the power curve under the larger sample size will climb more steeply. Therefore the answer must be either B or D . If B and D had equal sample sizes, the power under D would be smaller than under B over all values of p, since α under D is smaller. If the sample size under D were smaller than under B , the power under D could never exceed the power under B . However, the curve under D increases more steeply that that under B such that the power under D is greater than under B for any value of p greater than, say, 0.33 . Therefore the sample size under D must be greater than under B .
(d) Under which setting is the probability of a Type II error the smallest when $p=0.28$?

Solution: It is B: When $p=0.28$, the power curve under B is the highest, corresponding to the smallest Type II error probability.
4. Let X_{1}, \ldots, X_{n} be a random sample from the distribution with pdf given by

$$
f(x)=\beta^{-1} \exp \left(-x \beta^{-1}\right) \mathbb{1}(x>0),
$$

where $\beta \geq 0$ is unknown, and suppose it is of interest to test the hypotheses

$$
H_{0}: \beta=\beta_{0} \text { versus } H_{1}: \beta \neq \beta_{0} .
$$

(a) Give the likelihood function $L\left(\beta ; X_{1}, \ldots, X_{n}\right)$ for X_{1}, \ldots, X_{n}.

Solution:

$$
L\left(\beta ; X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \beta^{-1} \exp \left(-X_{i} \beta^{-1}\right)=\beta^{-n} \exp \left(-\beta^{-1} \sum_{i=1}^{n} X_{i}\right)
$$

(b) Give the log-likelihood function $\ell\left(\beta ; X_{1}, \ldots, X_{n}\right)$ for X_{1}, \ldots, X_{n}.

Solution:

$$
\ell\left(\beta ; X_{1}, \ldots, X_{n}\right)=-n \log \beta-\beta^{-1} \sum_{i=1}^{n} X_{i}
$$

(c) Find the maximum likelihood estimator $\hat{\beta}$ of β based on X_{1}, \ldots, X_{n}.

Solution: The derivative of the log-likelihood function is

$$
\frac{\partial}{\partial \beta} \ell\left(\beta ; X_{1}, \ldots, X_{n}\right)=-n \beta^{-1}+\beta^{-2} \sum_{i=1}^{n} X_{i}
$$

which is equal to zero at the value $\hat{\beta}=\bar{X}_{n}$.
(d) Give the likelihood ratio $\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)$ for testing the hypotheses $H_{0}: \beta=\beta_{0}$ versus $H_{1}: \beta \neq \beta_{0}$.

Solution:

$$
\begin{aligned}
\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right) & =\frac{\sup _{\beta \in\left\{\beta_{0}\right\}} L\left(\beta ; X_{1}, \ldots, X_{n}\right)}{\sup _{\beta \geq 0} L\left(\beta ; X_{1}, \ldots, X_{n}\right)} \\
& =\frac{L\left(\beta_{0} ; X_{1}, \ldots, X_{n}\right)}{L\left(\hat{\beta} ; X_{1}, \ldots, X_{n}\right)} \\
& =\frac{\beta_{0}^{-n} \exp \left(-\beta_{0}^{-1} \sum_{i=1}^{n} X_{i}\right)}{\hat{\beta}^{-n} \exp \left(-\hat{\beta}^{-1} \sum_{i=1}^{n} X_{i}\right)} \\
& =\frac{\beta_{0}^{-n} \exp \left(-\beta_{0}^{-1} \sum_{i=1}^{n} X_{i}\right)}{\bar{X}_{n}^{-n} \exp \left(-\bar{X}_{n}^{-1} \sum_{i=1}^{n} X_{i}\right)} \\
& =\left(\bar{X}_{n} / \beta_{0}\right)^{n} \exp \left(-\beta_{0}^{-1} n \bar{X}_{n}+n\right) \\
& =\left[\left(\bar{X}_{n} / \beta_{0}\right) \exp \left(-\bar{X}_{n} / \beta_{0}\right)\right]^{n} \exp (n)
\end{aligned}
$$

(e) Show that the rejection criterion $\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)<c$ of the likelihood ratio test is equivalent to

$$
\frac{\bar{X}_{n}}{\beta_{0}} \exp \left(-\frac{\bar{X}_{n}}{\beta_{0}}\right)<c^{1 / n} e^{-1}
$$

for any $c \in[0,1]$.
Solution: We have

$$
\begin{aligned}
& {\left[\left(\bar{X}_{n} / \beta_{0}\right) \exp \left(-\bar{X}_{n} / \beta_{0}\right)\right]^{n} \exp (n)<c} \\
& \quad \Longleftrightarrow\left[\left(\bar{X}_{n} / \beta_{0}\right) \exp \left(-\bar{X}_{n} / \beta_{0}\right)\right]<c^{1 / n} e^{-1}
\end{aligned}
$$

(f) Since the function $z e^{-z}$ is strictly increasing for $z<1$ and strictly decreasing for $z>1$, we have that rejecting H_{0} when $\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)<c$ is equivalent to rejecting H_{0} when

$$
\bar{X}_{n}<c_{1} \text { or } \bar{X}_{n}>c_{2}
$$

for some c_{1} and c_{2}. Explain in words how we can use the fact that

$$
X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exponential}(\beta) \Longrightarrow \bar{X}_{n} \sim \operatorname{Gamma}(n, \beta / n)
$$

to choose c_{1} and c_{2} such that the test has size α for any $\alpha \in(0,1)$.
Solution: Choose c_{1} and c_{2} to be the $\alpha / 2$ and $1-\alpha / 2$ quantiles of the $\operatorname{Gamma}\left(n, \beta_{0} / n\right)$ distribution.

