STAT 513 fa 2019 Exam I

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

The table below gives some values of the function $\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$:

z	0.841	1.282	1.645	1.96	2.326	2.576
$\Phi(z)$	0.80	0.90	0.95	0.975	.990	0.995

Result: Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution. Then

$$
\frac{\bar{X}_{n}-\mu_{0}}{S_{n} / \sqrt{n}} \sim t_{\phi, n-1}, \text { where } \phi=\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}} .
$$

1. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$, where p is unknown, and suppose the hypotheses

$$
H_{0}: p \leq 1 / 8 \text { versus } H_{1}: p>1 / 8
$$

are to be tested using the test

$$
\text { Reject } H_{0} \text { iff } \bar{X}_{n}>1 / 8+C \sqrt{(1 / 8)(7 / 8) / n}
$$

for some $C>0$, where $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$.
(a) For a given sample size n, state the distribution of $\sum_{i=1}^{n} X_{i}$.

Solution: $\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$
(b) Write down an expression for the power of the test as a function of p. Write the function such that it can be evaluated using the cdf of $\sum_{i=1}^{n} X_{i}$.

Solution:

$$
\begin{aligned}
\gamma(p) & =P_{p}\left(n^{-1} \sum_{i=1}^{n} X_{i}>1 / 8+C \sqrt{(1 / 8)(7 / 8) / n}\right) \\
& =1-P_{p}(Y \leq n(1 / 8+C \sqrt{(1 / 8)(7 / 8) / n})), \quad Y \sim \operatorname{Binomial}(n, p) \\
& =1-\sum_{x=0}^{\lfloor n(1 / 8+C \sqrt{(1 / 8)(7 / 8) / n)\rfloor}}\binom{n}{x} p^{x}(1-p)^{n-x}
\end{aligned}
$$

(c) Sketch the shape of the power curve.

Solution: The power curve should look like this:

(d) Give a function of \bar{X}_{n} which, assuming $p=1 / 8$, will have a sampling distribution closer and closer to the $\operatorname{Normal}(0,1)$ distribution for larger and larger n. Hint: Central Limit Theorem.

Solution: If $p=1 / 8$, then the sampling distribution of

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-1 / 8\right)}{\sqrt{1 / 8(7 / 8)}}
$$

becomes closer and closer to the $\operatorname{Normal}(0,1)$ distribution as $n \rightarrow \infty$.
(e) Find the value of C such that the test given above will have size approaching 0.05 as $n \rightarrow \infty$.

Solution: The value $C=1.645$ will give the test size approaching 0.05 as $n \rightarrow \infty$.
2. Consider a parameter $\theta \in \Theta$.
(a) Consider testing $H_{0}: \theta \in \Theta_{0}$ versus $H_{1}: \theta \in \Theta_{1}$, and suppose that instead of collecting real data related to θ, you decide you will just flip a fair coin and use the following test:

Reject H_{0} iff the coin flip is "heads".
What is the size of the test?

Solution: For all $\theta \in \Theta_{0}$, the probability of rejecting H_{0} based on this rule is $1 / 2$, so the size is $1 / 2$.
(b) Suppose you wish to test $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$, and you must choose between the two tests which have the power curves plotted below.

Discuss the relative merits of the two tests.
Solution: Well, well, it looks like we have two tests for which the power increases with the distance between θ and θ_{0}, which is what we would expect in a two-sided testing situation. The one corresponding to the dashed curve is a little less likely to result in Type I errors, so we might prefer it if we really don't want to falsely reject the null. On the other hand though, it has lower power than the other test over all values of θ in the alternate space, so if the null is untrue, we have a greater probability of making a Type II error. To choose between the tests we have to decide which is more important - high power or greater protection against Type I errors.
(c) Suppose you will test the hypotheses $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff } T<a \text { or } T>b \text {, }
$$

where T is some quantity you will compute on observed data and a and b are some real numbers. Suppose that when $\theta=\theta_{0}$, the quantity T has a distribution with cdf given by the function F.
i. Write down the probability of a Type I error in terms of the function F.

Solution: Since a Type I error is rejecting H_{0} when H_{0} is true, we need to give an expression for the probability of the rejection event, $T<a$ or $T>b$ under $\theta=\theta_{0}$. When $\theta=\theta_{0}$, T has the distribution with cdf F, so we have

$$
P_{\theta=\theta_{0}}(T<a \text { or } T>b)=F(a)+1-F(b) .
$$

ii. How could you find values a and b such that the test has size no greater than $\alpha \in(0,1)$?

Solution: In order for the test to have size no greater than α, we need

$$
F(a)+1-F(b) \leq \alpha
$$

If F is continuous and monotonically increasing, we can set the size exactly equal to α by choosing a to be the $\alpha / 2$ quantile of F and b to be the $1-\alpha / 2$ quantile of F. If F is not continuous and monotonically increasing, then there may not exist values a and b for which the size is exactly α. In this case we can choose values of a and b which are close to the $\alpha / 2$ and $1-\alpha / 2$ quantile that ensure a size no greater than α.
3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right), \sigma^{2}$ known, and consider $H_{0}: \mu \geq \mu_{0}$ versus $H_{1}: \mu<\mu_{0}$. The test

$$
\text { Reject } H_{0} \text { iff } \sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) / \sigma<-z_{\alpha}
$$

has power function given by

$$
\gamma(\mu)=\Phi\left(-z_{\alpha}-\sqrt{n}\left(\mu-\mu_{0}\right) / \sigma\right)
$$

(a) Carefully sketch the power curve, including a vertical line positioned at μ_{0} and a horizontal line positioned at α.

Solution: The power curve should be downward sloping and the power curve, the vertical line, and the horizontal line should all intersect. The range of the vertical axis should extend from 0 to 1 .
(b) Suppose it is of interest to detect a deviation from the null of size σ (that is, you wish to detect whether $\mu<\mu_{0}-\sigma$) with probability 0.80 while keeping the probability of a Type I error bounded by 0.01 . Find the required sample size.

Solution: We wish to find the smallest n which satisfies

$$
0.80 \leq \gamma\left(\mu_{0}-\sigma\right)=\Phi\left(-z_{0.01}-\sqrt{n}\left(\left(\mu_{0}-\sigma\right)-\mu_{0}\right) / \sigma\right)=\Phi\left(-z_{\alpha}-\sqrt{n}\right)
$$

From the above we have

$$
z_{0.20} \leq-z_{0.01}+\sqrt{n} \Longleftrightarrow n^{2} \geq\left(z_{0.20}+z_{0.01}\right)^{2}=(0.841+2.326)^{2}=(3.167)^{2}
$$

(c) Say whether the required sample size would increase or decrease for each of the following modifications to part (b).
i. If you kept the Type I error probability bounded by 0.05 instead of 0.01 .

Solution: Then the minimum required sample size would be smaller.
ii. If you wanted to detect the deviation with probability 0.90 instead of 0.80 .

Solution: Then the minimum required sample size would be larger.
iii. If you wanted to detect a deviation from the null of size $\sigma / 2$ instead of σ.

Solution: Then the minimum required sample size would be larger.
(d) Suppose you collect data such that $\sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) / \sigma=-1.58$. In which of the following intervals does the p-value lie?
A. $(0, .005)$
B. $[.005, .01)$
C. $[.01, .05)$
D. $[.05, .1)$
E. $[.1, .5)$
F. $[.5,1)$
(e) Judge each of the following statements as true or false, and explain your reasoning to get credit.
i. Increasing n will guarantee that the test has a smaller maximum probability of Type I error.

Solution: False. The sample size does not have any effect on the size of the test.
ii. Increasing n will increase the power of the test for all values of μ.

Solution: False. Increasing the sample size will increase the power of the test only for values of μ which are less than μ_{0}, that is only for value of μ in the alternate space.
iii. A larger value of σ will increase the height of the power curve to the left of μ_{0}.

Solution: False. A larger value of σ will lower the power over the alternate space, which is to the left of μ_{0}.
4. The plot below shows the pdfs of four non-central t-distributions with degrees of freedom equal to 8 , each with a different value of the noncentrality parameter.

t

The four non-centrality parameter values are $\phi_{A}=0, \phi_{B}=1, \phi_{C}=-2$, and $\phi_{D}=6$. Suppose X_{1}, \ldots, X_{9} is a random sample from the $\operatorname{Normal}\left(\mu=1, \sigma^{2}=4\right)$ distribution.
(a) Identify the pdf which is the pdf of $\sqrt{9}\left(\bar{X}_{9}-1\right) / S_{9}$.

Solution: This is the central t distribution, with $\phi=0$, so the answer is A.
(b) Suppose you will reject $H_{0}: \mu \leq 1 / 3$ in favor of $H_{1}: \mu>1 / 3$ if $\sqrt{9}\left(\bar{X}_{9}-1 / 3\right) / S_{9}>t_{9,0.05}$. Given that the true value of the mean is $\mu=1$, carefully shade an area of the plot such that the area is equal to the power.

Solution: The quantity $\sqrt{9}\left(\bar{X}_{9}-1 / 3\right) / S_{9}$ will have the non-central t-distribution with 8 degrees of freedom and noncentrality parameter $\sqrt{9}(1-1 / 3) / 2=1$. So the shaded region is under the dashed curve (curve B) to the right of $t_{9,0.05}$, which is found as the horizontal position such that the area under the solid curve (curve A) to the right is equal to 0.05 .

