STAT 513 fa 2019 Exam II

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

Some upper quantiles of some t-distributions:

ξ	0.10	0.05	0.025	0.01	0.005
$t_{28, \xi}$	1.3125	1.7011	2.0484	2.4671	2.7633
$t_{29, \xi}$	1.3114	1.6991	2.0452	2.4620	2.7564
$t_{30, \xi}$	1.3104	1.6973	2.0423	2.4573	2.7500
$t_{31, \xi}$	1.3095	1.6955	2.0395	2.4528	2.7440

Some upper quantiles of some chi-squared distributions:

ξ	0.10	0.05	0.025	0.01	0.005
$\chi_{1, \xi}^{2}$	2.71	3.84	5.02	6.63	7.88
$\chi_{2, \xi}^{2}$	4.61	5.99	7.38	9.21	10.60

For any $\mathbf{a} \in \mathbb{R}^{p+1}$, a $(1-\alpha) 100 \%$ confidence interval for $\mathbf{a}^{T} \hat{\boldsymbol{\beta}}$ is given by

$$
\mathbf{a}^{T} \hat{\boldsymbol{\beta}} \pm t_{n-p-1, \alpha / 2} \hat{\sigma} \sqrt{\mathbf{a}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{a}},
$$

and the t-test statistic for comparing $\mathbf{a}^{T} \boldsymbol{\beta}$ to a null value a^{*} is given by

$$
T_{n}=\frac{\mathbf{a}^{T} \hat{\boldsymbol{\beta}}-a^{*}}{\hat{\sigma} \sqrt{\mathbf{a}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{a}}} .
$$

Let X_{1}, \ldots, X_{n} be a random sample with likelihood function $L\left(\theta ; X_{1}, \ldots, X_{n}\right)$. Then for hypotheses of the form $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$ the likelihood ratio is

$$
\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)=\frac{L\left(\theta_{0} ; X_{1}, \ldots, X_{n}\right)}{L\left(\hat{\theta} ; X_{1}, \ldots, X_{n}\right)}
$$

where $\hat{\theta}$ is the MLE of θ.

1. Each of n randomly selected subjects is given m opportunities to predict the outcome of a coin toss. Let p denote the probability that a subject makes the correct prediction. The numbers of correct predictions Y_{1}, \ldots, Y_{n} made by the subjects are assumed to be independent $\operatorname{Binomial}(m, p)$ random variables. Researchers from L'Institut de la Clairvoyance wish to test the hypotheseses

$$
H_{0}: p=1 / 2 \text { versus } H_{1}: p \neq 1 / 2 .
$$

The likelihood function is given by

$$
L\left(p ; Y_{1}, \ldots, Y_{n}\right)=\prod_{i=1}^{n}\binom{m}{Y_{i}} p^{Y_{i}}(1-p)^{m-Y_{i}} .
$$

(a) Write down the \log-likelihood function $\ell\left(p ; Y_{1}, \ldots, Y_{n}\right)$. It will be convenient to use $\sum_{i=1}^{n} Y_{i}=n \bar{Y}_{n}$.

Solution: The log-likelihood function is

$$
\ell\left(p ; Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n} \log \binom{m}{Y_{i}}+n \bar{Y}_{n} \log p+\left(n m-n \bar{Y}_{n}\right) \log (1-p)
$$

(b) Find the maximum likelihood estimator of p.

Solution: Setting the partial derivative of $\ell\left(p ; Y_{1}, \ldots, Y_{n}\right)$ with respect to p equal to zero and solving for p gives

$$
\hat{p}=\bar{Y}_{n} / m .
$$

(c) Write down the likelihood ratio $\operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)$ and simplify it as much as seems reasonable.

Solution: We have

$$
\begin{aligned}
\operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right) & =\frac{\prod_{i=1}^{n}\binom{m}{Y_{i}}(1 / 2)^{Y_{i}}(1-1 / 2)^{m-Y_{i}}}{\prod_{i=1}^{n}\binom{m}{Y_{i}}\left(\bar{Y}_{n} / m\right)^{Y_{i}}(1-\bar{Y} / m)^{m-Y_{i}}} \\
& =\prod_{i=1}^{n}\left[\frac{1 / 2}{\bar{Y}_{n} / m}\right]^{Y_{i}}\left[\frac{1-1 / 2}{1-\bar{Y}_{n} / m}\right]^{m-Y_{i}} \\
& =\left[\frac{1 / 2}{\bar{Y}_{n} / m}\right]^{n \bar{Y}_{n}}\left[\frac{1-1 / 2}{1-\bar{Y}_{n} / m}\right]^{n m-n \bar{Y}_{n}} .
\end{aligned}
$$

(d) Give the form of the likelihood ratio test for the hypotheses of interest.

Solution: The LRT rejects H_{0} if and only if

$$
\left[\frac{1 / 2}{\bar{Y}_{n} / m}\right]^{n \bar{Y}_{n}}\left[\frac{1-1 / 2}{1-\bar{Y}_{n} / m}\right]^{n m-n \bar{Y}_{n}}<c
$$

for some $c \in[0,1]$.
(e) Get an expression for $-2 \log \operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)$ and state the rejection rule of the asymptotic likelihood ratio test of size $\alpha=0.05$.

Solution: The asymptotic likelihood ratio test is based on the quantity

$$
-2 \log \operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)=-2\left[n \bar{Y}_{n} \log \left(\frac{1 / 2}{\bar{Y}_{n} / m}\right)+\left(n m-n \bar{Y}_{n}\right) \log \left(\frac{1-1 / 2}{1-\bar{Y}_{n} / m}\right)\right] .
$$

The size- 0.05 asymptotic LRT rejects H_{0} when this quantity exceeds $\chi_{1,0.05}^{2}=3.84$.
2. Consider the simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

for the data $\left(Y_{1}, x_{1}\right), \ldots,\left(Y_{n}, x_{n}\right)$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ error terms and x_{1}, \ldots, x_{n} are fixed constants. Suppose we will reject $H_{0}: \beta_{1}=0$ in favor of $H_{1}: \beta_{1} \neq 0$ if and only if

$$
\frac{\left|\hat{\beta}_{1}\right|}{\hat{\sigma} \sqrt{S_{x x}^{-1}}}>t_{n-2, \alpha / 2}
$$

where $\hat{\beta}_{1}$ is the least-squares estimator of β_{1} and $S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}$. Fill in the blanks.
(a) A smaller_(larger/smaller) error term variance leads to _larger_ (larger/smaller) power of the test when $\beta_{1} \neq 0$.
(b) Values of x_{1}, \ldots, x_{n} with a _ larger_ (larger/smaller) spread lead to _ larger (larger/smaller) power of the test when $\beta_{1} \neq 0$.
(c) Values of β_{1} of larger_(larger/smaller) magnitude lead to larger (larger/smaller) power of the test.
(d) A _smaller (larger/smaller) value of α leads to __smaller_(larger/smaller) power of the test when $\beta_{1} \neq 0$.
3. Suppose $\operatorname{Var}\left(\hat{\beta}_{0}\right)=2, \operatorname{Var}\left(\hat{\beta}_{1}\right)=1$, and $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=-1 / 2$. Then give the variance of $\hat{Y}_{\text {new }}=\hat{\beta}_{0}+x_{\text {new }} \hat{\beta}_{1}$ for $x_{\text {new }}=3$.

Solution: We have

$$
\operatorname{Var} \hat{Y}_{\text {new }}=\operatorname{Var}\left(\hat{\beta}_{0}+x_{\text {new }} \hat{\beta}_{1}\right)=\operatorname{Var} \hat{\beta}_{0}+x_{\text {new }}^{2} \operatorname{Var}\left(\hat{\beta}_{1}\right)+2 x_{\text {new }} \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)
$$

For $x_{\text {new }}=3$, the above is equal to $2+3^{2}(1)+2(3)(-1 / 2)=8$.
4. Consider the multiple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i}
$$

for $i=1, \ldots, 31$, where Y_{1}, \ldots, Y_{n} are volumes of timber harvested from trees, $x_{11}, \ldots, x_{n 1}$ are the girths of the trees, and $x_{12}, \ldots, x_{n 2}$ are the heights of the trees, and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are assumed to be independent random variables with the $\operatorname{Normal}\left(0, \sigma^{2}\right)$ distribution. Let \mathbf{X} be the corresponding design matrix and suppose that

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left[\begin{array}{rrr}
4.9519 & 0.0287 & -0.0697 \\
0.0287 & 0.0046 & -0.0012 \\
-0.0697 & -0.0012 & 0.0011
\end{array}\right], \quad \hat{\boldsymbol{\beta}}=\left[\begin{array}{r}
-57.9877 \\
4.7082 \\
0.3393
\end{array}\right], \quad\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|_{2}^{2}=421.9214
$$

In addition $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}=8106.084$. For the following, you do not need to evaluate your answers.
(a) Give the value of $\hat{\sigma}^{2}$.

Solution: We have

$$
\hat{\sigma}^{2}=421.9214 / 28
$$

(b) Give a 95% confidence interval for β_{1}.

Solution:

$$
4.7082 \pm 2.0484 \sqrt{421.9214 / 28} \sqrt{0.0046}
$$

(c) Suppose you wish to test $H_{0}: \beta_{2}=0$ versus $H_{1}: \beta_{2} \neq 0$ using the t-test.
i. Give the test statistic.

Solution: The test statistic is

$$
T=\frac{0.3393}{\sqrt{421.9214 / 28} \sqrt{0.0011}}
$$

ii. Give the rejection rule (give the critical value) under which the test will have size $\alpha=0.01$.

Solution: We would reject H_{0} if and only if the absolute value of the test statistic were to exceed $t_{28,0.005}=2.7633$.
(d) i. State the null and alternate hypotheses which would be tested by the overall F-test of significance for this model.

Solution: The overall F-test of significance would test
$H_{0}: \beta_{1}=\beta_{2}=0$ versus H_{1} : Either β_{1} or β_{2} or both are not equal to zero.
ii. Give the value of the test statistic for the overall F-test of significance,

$$
F=\frac{\mathrm{MSM}}{\mathrm{MSE}}=\frac{\mathrm{SSM} / p}{\mathrm{SSE} /(n-p-1)}
$$

Solution: We obtain SSM as SST $-\mathrm{SSE}=8106.084-421.9214$. So we have

$$
F=\frac{(8106.084-421.9214) / 2}{421.9214 /(31-2-1)}
$$

iii. Explain how you would obtain a p-value for the overall F-test using the statistic in the previous part. You must give the numerator and denominator degrees of freedom of the relevant F distribution.

Solution: The p-value is the area under the pdf of the $F_{2,28}$ distribution to the right of the value of the F-statistic.

