STAT 513 fa 2020 Exam I

Karl B. Gregory

This is a take-home test due to COVID-19. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

- 1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
- 2. The player of a carnival game can win \$5 or \$20, and the game costs \$8 to play. Denote by p the probability of winning \$20.
 - (a) For what values of p are the expected net winnings greater than 0 (your winnings minus the cost of playing the game)?
 - (b) Suppose you will play the game if you can conclude that the expected net winnings are positive. Give the null and alternate hypotheses of interest to you.
 - (c) For the following, state whether it is a correct decision or a Type I or a Type II error:
 - i. You decide to play the game when p = 0.15.
 - ii. You decide not to play the game when p = 0.30.
 - iii. You decide to play the game when p = 0.21.
 - (d) You decide to test these hypotheses by observing the outcomes for 10 other people who play the game; you will play if at least half of them win \$20.
 - i. What is your test statistic?
 - ii. What is your rejection region?
 - iii. Give an expression for the power function $\gamma(p)$ of your test.
 - iv. What is the size of your test?
 - v. What is the power of your test if the true probability of winning \$20 is 0.30?
 - vi. How can you change the rejection region to reduce the size of the test?
 - vii. If you reduce the size of the test, how does it affect the power when the null hypothesis is false?
- 3. Let $Y_1, \ldots, Y_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, 1)$ and consider testing

$$H_0$$
: $\mu \leq 0$ versus H_1 : $\mu > 0$

with

Reject
$$H_0$$
 iff $\sqrt{n}\bar{Y}_n > z_\alpha$.

- (a) Give the power function $\gamma(\mu)$ of the test.
- (b) For $\mu > 0$ what happens to the power if
 - i. n is decreased?
 - ii. α is decreased?
- (c) For $\mu = 0$ what happens to the power if
 - i. n is decreased?
 - ii. α is decreased?
- (d) For $\mu < 0$ what happens to the power if
 - i. n is decreased?
 - ii. α is decreased?

- (e) If researchers wish, in the case that $\mu \geq 1$, to reject H_0 with probability at least 0.90 while keeping the Type I error probability controlled at $\alpha = 0.05$, what sample size do you recommend? Justify your answer.
- (f) For n = 10, what is the p-value associated with observing $\bar{Y} = 0.478$?
- 4. Suppose you must make phone calls to people until 3 people answer; let Y be the total number of phone calls you have to make. Let p be the probability with which each person answers the phone, and suppose you plan on testing

$$H_0$$
: $p \ge 0.10$ versus H_1 : $p < 0.10$

with the test

Reject
$$H_0$$
 iff $Y > 50$.

- (a) What is the size of the test?
- (b) What is the probability of a Type II error when p = 0.08?
- 5. Suppose $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \text{Exponential}(\lambda_k)$, k = 1, 2, where λ_1 and λ_2 are unknown, and let \bar{X}_1 and \bar{X}_2 be the sample means. Consider testing the hypotheses

$$H_0$$
: $\lambda_1/\lambda_2 \le 1$ vs H_1 : $\lambda_1/\lambda_2 > 1$

with the test

Reject
$$H_0$$
 iff $\bar{X}_1/\bar{X}_2 > C$.

Note that

$$\frac{\bar{X}_1/\lambda_1}{\bar{X}_2/\lambda_2} \sim F_{2n_1,2n_2},$$

where $F_{2n_1,2n_2}$ denotes the F-distribution with numerator degrees of freedom $2n_1$ and denominator degrees of freedom $2n_2$.

- (a) Suppose $\lambda_1 = 1$ and $\lambda_2 = 1$ and $n_1 = 10$ and $n_2 = 12$. Give the probability of a Type I error if the critical value C = 2 is used.
- (b) Let $\vartheta = \lambda_1/\lambda_2$. Show that for any sample sizes n_1 and n_2 the power function $\gamma(\vartheta)$ is given by

$$\gamma(\vartheta) = 1 - F_{F_{2n_1,2n_2}}(C/\vartheta).$$

where $F_{F_{2n_1,2n_2}}$ denotes the cdf of the $F_{2n_1,2n_2}$ distribution.

- (c) Under the sample sizes $n_1 = 10$ and $n_2 = 12$, give the value C such that the size of the test will be equal to 0.01.
- (d) Under the sample sizes $n_1 = 10$ and $n_2 = 12$, give the power of the test under $\alpha = 0.05$ if $\lambda_1 = 1$ and $\lambda_2 = 1/2$.
- (e) Suppose $\lambda_1 = 1$ and $\lambda_2 = 1/2$, and set $n_1 = n_2 = n$, so that the two sample sizes are equal. Find the smallest n under which the power of the test with size $\alpha = 0.05$ is at least 0.90. Hint: You cannot solve an equation for n; you need to compute the power at different values until you find the right n.