STAT 513 fa 2020 Exam II

Karl B. Gregory

This is a take-home test due to COVID-19. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
2. Let $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind }}{\sim} \operatorname{Gamma}(\alpha, \beta)$, where α is known, and consider

$$
H_{0}: \beta \leq \beta_{0} \text { versus } H_{1}: \beta>\beta_{0}
$$

(a) Give the likelihood function $\mathcal{L}\left(\beta ; Y_{1}, \ldots, Y_{n}\right)$.

We have

$$
\mathcal{L}\left(\beta ; Y_{1}, \ldots, Y_{n}\right)=\left(\Gamma(\alpha) \beta^{\alpha}\right)^{-n}\left(\prod_{i=1}^{n} Y_{i}\right)^{\alpha-1} \exp \left(-\frac{n \bar{Y}_{n}}{\beta}\right) .
$$

(b) Give the log-likelihood function $\ell\left(\beta ; Y_{1}, \ldots, Y_{n}\right)$.

We have

$$
\ell\left(\beta ; Y_{1}, \ldots, Y_{n}\right)=-n \log \Gamma(\alpha)-n \alpha \log \beta+(\alpha-1) \sum_{i=1}^{n} \log Y_{i}-\frac{n \bar{Y}_{n}}{\beta} .
$$

(c) Find the maximum likelihood estimator $\hat{\beta}$ of β.

Differentiating the log-likelihood with respect to β and setting this equal to zero gives

$$
\hat{\beta}=\frac{\bar{Y}_{n}}{\alpha} .
$$

(d) Find the restricted maximum likelihood estimator $\hat{\beta}_{0}$ of β defined as

$$
\hat{\beta}_{0}=\underset{0<\beta \leq \beta_{0}}{\operatorname{argmax}} \mathcal{L}\left(\beta ; Y_{1}, \ldots, Y_{n}\right) .
$$

We have

$$
\hat{\beta}_{0}= \begin{cases}\hat{\beta}, & \hat{\beta} \leq \beta_{0} \\ \beta_{0}, & \hat{\beta}>\beta_{0}\end{cases}
$$

(e) Give the likelihood ratio $\operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)$.

We have

$$
\operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)= \begin{cases}1, & \hat{\beta} \leq \beta_{0} \\ {\left[\left(\frac{\hat{\beta}}{\beta_{0}}\right) \exp \left(-\frac{\hat{\beta}}{\beta_{0}}\right)\right]^{\alpha n} \exp (n \alpha),} & \hat{\beta}>\beta_{0}\end{cases}
$$

(f) State whether the likelihood ratio is monotone increasing or decreasing in $\hat{\beta}$ when $\hat{\beta}>\beta_{0}$.

It is monotone decreasing in $\hat{\beta}$ for $\hat{\beta}>\beta_{0}$.
(g) Use mgfs to find the distribution of $\hat{\beta}$.

We have $\hat{\beta}=\bar{Y}_{n} / \alpha$, which has mgf given by

$$
\begin{aligned}
M_{\hat{\beta}}(t) & =M_{\bar{Y}_{n} / \alpha}(t) \\
& =M_{Y_{1}+\cdots+Y_{n}}(t /(n \alpha)) \\
& =\left[M_{Y_{1}}(t /(n \alpha))\right]^{n} \\
& =\left[(1-\beta t /(n \alpha))^{-\alpha}\right]^{n} \\
& =(1-(\beta /(n \alpha)) t)^{-\alpha n} .
\end{aligned}
$$

So we have

$$
\hat{\beta} \sim \operatorname{Gamma}(\alpha n, \beta /(\alpha n))
$$

(h) Give a test that is equivalent to the likelihood ratio test of size 0.05.

The test

$$
\text { Reject } H_{0} \text { iff } \hat{\beta}>G_{\alpha n, \beta /(\alpha n), 0.05}
$$

where $G_{\alpha n, \beta /(\alpha n), 0.05}$ is the upper 0.05 quantile of the $\operatorname{Gamma}(\alpha n, \beta /(\alpha n))$ distribution, is equivalent to the LRT with size 0.05 .
(i) Give the rejection criterion for the asymptotic likelihood ratio test of size 0.05 for testing

$$
H_{0}: \beta=\beta_{0} \text { versus } H_{1}: \beta \neq \beta_{0}
$$

We have

$$
-2 \log \operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)=-2 \alpha n\left[\log \left(\hat{\beta} / \beta_{0}\right)-\hat{\beta} / \beta_{0}+1\right] .
$$

The asymptotic likelihood ratio test with size 0.05 rejects H_{0} if and only if this quantity exceeds $\chi_{0.05}^{2}=3.841459$.
(j) Let $\alpha=2 / 3, n=10, \bar{Y}_{n}=1$, and $\beta_{0}=1$.
i. Give the p-value of the asymptotic likelihood ratio test from part (i).

We have $\hat{\beta}=3 / 2$, and

$$
-2 \log \operatorname{LR}\left(Y_{1}, \ldots, Y_{n}\right)=1.260465
$$

so the p-value is $P(W>1.260465), W \sim \chi_{1}^{2}$. This is

$$
1-\operatorname{pchisq}(1.260465,1)=0.261563
$$

ii. Give the p-value of the likelihood ratio test from part (h).

The p-value is given by

$$
1-\operatorname{pgamma}(3 / 2, \text { shape }=6.6667, \text { scale }=0.15)=0.1061
$$

3. Let $Y_{i}=10+\varepsilon_{i}$ for $i=1, \ldots, 11$, where $\varepsilon_{1}, \ldots, \varepsilon_{11} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1)$, and let

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}\right)=(-5,-4,-3,-2,-1,0,1,2,3,4,5) .
$$

Simple linear regression is to be carried out on the data pairs $\left(x_{1}, Y_{1}\right), \ldots,\left(x_{11}, Y_{11}\right)$, with

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left[Y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2} .
$$

(a) Give the following:
i. $\mathbb{E} \hat{\beta}_{1}$.

We have $\mathbb{E} \hat{\beta}_{1}=0$.
ii. $\operatorname{Var} \hat{\beta}_{1}$.

We have $S_{x x}=\sum_{i=1}^{11}\left(x_{i}-\bar{x}_{n}\right)^{2}=110$ and $\sigma^{2}=1$, so $\operatorname{Var} \hat{\beta}_{1}=\sigma^{2} / S_{x x}=1 / 110=0.00909$.
iii. $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$.

Since $\bar{X}_{n}=0, \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=-\bar{x}_{n} S_{x x}^{-1} \sigma^{2}=0$.
iv. $\operatorname{Var}\left(\hat{\beta}_{0}+3 \hat{\beta}_{1}\right)$.

We have

$$
\operatorname{Var}\left(\hat{\beta}_{0}+3 \hat{\beta}_{1}\right)=\left[\frac{1}{11}+\frac{3^{2}}{110}\right]=\frac{19}{110}=0.1727273
$$

v. $P\left(-1 / 5<\hat{\beta}_{1}<1 / 5\right)$.

We have

$$
\begin{aligned}
P\left(-1 / 5<\hat{\beta}_{1}<1 / 5\right) & =P\left(-\frac{S_{x x}}{5 \sigma}<\frac{\hat{\beta}_{1}-0}{\sigma / \sqrt{S_{x x}}}<\frac{\sqrt{S_{x x}}}{5 \sigma}\right) \\
& =P(-\sqrt{110} / 5)<Z<\sqrt{110} / 5) \\
& =P(-2.097618<Z<2.097618), \quad Z \sim \operatorname{Normal}(0,1) \\
& =0.9640611
\end{aligned}
$$

(b) Suppose we observe $\sum_{i=1}^{11} \hat{\varepsilon}_{i}^{2}=14.29, \bar{Y}_{n}=10.32, S_{Y Y}=14.47$, and $r_{x Y}=0.111$. Based on this data, give
i. The value of $\hat{\beta}_{1}$.

We have

$$
\hat{\beta}_{1}=0.111 \sqrt{14.47 / 110}=0.04025881 .
$$

ii. The value of $\hat{\beta}_{0}$.

We have

$$
\hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{x}_{n}=\bar{Y}_{n}=10.32
$$

iii. A 95% confidence interval for β_{1}.

We have $\hat{\sigma}^{2}=(1 / 9) \sum_{i=1}^{11} \hat{\varepsilon}_{i}^{2}=1.588$.

$$
0.04025881 \pm \underbrace{t_{n-2,0.05 / 2}}_{2.262157} \sqrt{1.588} / \sqrt{110}=(-0.2316006,0.3119642)
$$

iv. A 95% confidence interval for the height of the regression function at $x_{\text {new }}=1 / 2$.

$$
10.32091+(1 / 2) 0.0403 \pm \underbrace{t_{n-2,0.05 / 2}}_{2.262157} \sqrt{1.588} \sqrt{1 / 11+(1 / 2)^{2} / 110}=(9.470872,11.21113) .
$$

v. A 95% prediction interval for a new value $Y_{\text {new }}$ of the response with $x_{\text {new }}=1 / 2$.

$$
10.32091+(1 / 2) 0.0403 \pm \underbrace{t_{n-2,0.05 / 2}}_{2.262157} \sqrt{1.588} \sqrt{1+1 / 11+(1 / 2)^{2} / 110}=(7.360674,13.32133)
$$

4. Suppose 12 individuals will be randomly assigned to a placebo group or to one of two treatment groups, such that 4 individuals will receive the placebo, 4 will receive treatment one, and 4 will receive treatment two. Clinical response values Y_{1}, \ldots, Y_{12} will be recorded and the multiple linear regression model

$$
Y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\varepsilon_{i}, \quad i=1, \ldots, 12
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)$, and

$$
\left(x_{1 i}, x_{2 i}, x_{31}\right)= \begin{cases}(1,0,0), & \text { if individual } i \text { in placebo group } \\ (0,1,0), & \text { if individual } i \text { in treatment one group } \\ (0,0,1), & \text { if individual } i \text { in treatment two group }\end{cases}
$$

will be fit to the data (note that the model does not have an intercept). Let \bar{Y}_{0}, \bar{Y}_{1} and \bar{Y}_{2} be the mean responses observed in the placebo, treatment one, and treatment two groups, respectively, and suppose the design matrix \mathbf{X} of the study is given by

$$
\mathbf{X}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Give $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.

We have

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 / 4 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]
$$

(b) Give $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$.

We have

$$
\hat{\boldsymbol{\beta}}=\left[\begin{array}{ccc}
1 / 4 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]\left[\begin{array}{c}
Y_{1}+Y_{2}+Y_{3}+Y_{4} \\
Y_{5}+Y_{6}+Y_{7}+Y_{8} \\
Y_{9}+Y_{10}+Y_{11}+Y_{12}
\end{array}\right]=\left[\begin{array}{c}
\bar{Y}_{0} \\
\bar{Y}_{1} \\
\bar{Y}_{2}
\end{array}\right]
$$

(c) Consider the hypotheses

$$
H_{0}: \beta_{2}=\beta_{3} \text { versus } H_{1}: \beta_{2} \neq \beta_{3}
$$

i. Give an interpretation of the null hypothesis H_{0} in words in the context of the problem.

The null hypothesis states that the mean clinical response of individuals receiving treatment 1 is no different than that of individuals receiving treatment 2 .
ii. What is the degrees of freedom of the chi-squared distribution from which we would find the critical value for the asymptotic likelihood ratio test?

The dimension of the entire parameter space is $d=4$, since we have $\theta=\left(\beta_{1}, \beta_{2}, \beta_{3}, \sigma^{2}\right) \in$ $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times[0, \infty)$. The dimension of the null space is $d_{0}=3$, since β_{2} and β_{3} are constrained
to be the same. The degrees of freedom of the relevant chi-squared distribution is therefore $4-3=1$.

