STAT 513 hw 1

- 1. You are interested in the probability of the outcome \square when rolling a six-sided die. Answer the following questions using p to denote the probability of this outcome.
 - (a) You suspect that for this die the outcome 🖽 does not occur with the same probability as with a fair die. Formulate the null and alternative hypotheses based on which you may make a statistical inference regarding your suspicion.
 - (b) You suspect that for this die the outcome 🗊 occurs with greater probability than with a fair die. Formulate the null and alternative hypotheses based on which you may make a statistical inference regarding your suspicion.
 - (c) You suspect that for this die the outcome i occurs with lesser probability than with a fair die. Formulate the null and alternative hypotheses based on which you may make a statistical inference regarding your suspicion.
 - (d) You believe that for this die the outcome 🖽 occurs with the same probability as with a fair die.
 - i. How might you collect evidence in support of your belief?
 - ii. Which is easier: to collect evidence in favor of balancedness or to collect evidence against balancedness?
- 2. You wish to test whether a coin lands "heads" and "tails" with the same probability. Use p to denote the probability that the coin lands "heads".
 - (a) State the relevant null and alternate hypotheses.
 - (b) Suppose you choose to reject the null hypothesis when in 10 tosses you get more than 7 or less than 3 "heads".
 - i. What is the power of your test when the true probability of "heads" is 0.6?
 - ii. What is the probability that your test results in a Type II error when the true probability of "heads" is 0.3?
 - iii. Write an expression for the power function $\gamma(p)$ of the test.
 - iv. What is the size of the test?
 - v. Make a plot of the power $\gamma(p)$ against p for $p = 0.01, 0.02, \dots, 0.99$ (Use R).
 - vi. At what value of p is the power equal to the size?
 - (c) Propose a test based on 20 tosses which has size less than or equal to 0.05.
 - (d) Plot the power curve of your test.
- 3. Suppose X_1, \ldots, X_n is a random sample from the Normal $(\mu, 4)$ distribution and consider three situations:
 - 1. Test $H_0: \mu \leq 0$ versus $H_1: \mu > 0$ with test: Reject H_0 iff $\sqrt{nX_n/2} > C_1$
 - 2. Test H_0 : $\mu = 0$ versus H_1 : $\mu \neq 0$ with test: Reject H_0 iff $|\sqrt{n}\bar{X}_n/2| > C_2$
 - 3. Test H_0 : $\mu \ge 0$ versus H_1 : $\mu < 0$ with test: Reject H_0 iff $\sqrt{n}\bar{X}_n/2 < C_3$
 - (a) Find an expression for the power functions $\gamma_1(\mu)$, $\gamma_2(\mu)$, and $\gamma_3(\mu)$ for the three tests. Use the notation $\Phi(z) = P(Z < z)$, where $Z \sim \text{Normal}(0, 1)$.

- (b) Find the values C_1 , C_2 , and C_3 such that each of the above tests has size equal to 0.05.
- (c) For n = 10 and the choices of C_1, C_2 , and C_3 from part (b), plot the power functions $\gamma_1(\mu)$, $\gamma_2(\mu)$, and $\gamma_3(\mu)$ against μ on the same plot for μ between -3 and 3 (Use R).
- (d) Suppose you are a researcher interested in showing that $\mu > 0$. Is it better to use test 1. or test 2.? Explain your answer.
- 4. Let X_1, \ldots, X_n be a random sample from the Uniform $(0, \theta)$ distribution, where $\theta \in (0, \infty)$ is unknown. The values X_1, \ldots, X_n could be time intervals between occurrences of some phenomenon, so that θ would represent the maximum possible duration of any interval. A researcher wishes to show that the maximum possible duration is less than 1, that is to test the hypotheses H_0 : $\theta \ge 1$ versus H_1 : $\theta < 1$.
 - (a) Consider the test

Reject
$$H_0$$
 iff $X_{(n)} < 2/3$,

where $X_{(n)}$ is the largest order statistic.

- i. For a sample size of 10, what is the probability of rejecting H_0 when $\theta = 5/4$?
- ii. For a sample size of 10, what is the probability of committing a Type II error when $\theta = 3/4$?
- iii. What is the power of the test when $\theta \in (0, 2/3]$?
- iv. For a sample size of 10, give an expression for the power function of the test.
- v. For a sample size of 10, give the size of the test.
- (b) Consider the test

Reject H_0 iff $X_{(n)} < C$

for 0 < C < 1.

- i. Find an expression for the power function $\gamma(\theta)$ of the test (involves n and θ).
- ii. Give an expression for the size of the test in terms of n and C.
- iii. Give an expression for the value C which will make the test have size equal to α for any $\alpha \in (0, 1)$.
- iv. For a sample size of n = 20, find the value C such that the test has size equal to 0.01.