STAT 513 hw 4

- 1. Let X_1, \ldots, X_n be a random sample from the Normal (μ, σ^2) distribution, where μ and σ^2 are unknown, and suppose we are interested in testing H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$.
 - (a) Give the likelihood function $L(\mu, \sigma^2; X_1, \ldots, X_n)$.
 - (b) Give the log-likelihood function $\ell(\mu, \sigma^2; X_1, \ldots, X_n)$.
 - (c) Find the maximum likelihood estimators $\hat{\mu}$ and $\hat{\sigma}^2$ of μ and σ^2 .
 - (d) Find an expression for $\hat{\sigma}_0^2$, where

$$\hat{\sigma}_0^2 = \operatorname{argmax}_{\sigma^2} L(\mu_0, \sigma^2; X_1, \dots, X_n)$$

- (e) Give the likelihood ratio.
- (f) Show that the likelihood ratio simplifies to

$$LR(X_1, \dots, X_n) = \left[\frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{\sum_{i=1}^n (X_i - \mu_0)^2}\right]^{n/2}$$

(g) Show that for any $c \in [0, 1]$ the rejection criterion of the likelihood ratio test, $LR(X_1, \ldots, X_n) < c$, is equivalent to

$$\sqrt{n}|X_n - \mu_0|/S_n > c^*$$

for some c^* .

(h) Use the fact that

$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Normal}(\mu, \sigma^2) \implies \sqrt{n}(\bar{X}_n - \mu)/S_n \sim t_{n-1}$$

to find a value c^* such that the likelihood ratio test has size equal to α for any $\alpha \in (0, 1)$.

2. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Exponential}(\lambda)$ and consider

$$H_0: \lambda \leq \lambda_0 \text{ versus } H_1: \lambda > \lambda_0.$$

(a) Show that the likelihood function $\mathcal{L}(\lambda; X_1, \ldots, X_n)$ for λ can be written as

$$\mathcal{L}(\lambda; X_1, \dots, X_n) = \lambda^{-n} \exp(-nX_n/\lambda).$$

- (b) Give the log-likelihood function $\ell(\lambda; X_1, \ldots, X_n)$ for λ .
- (c) Find the MLE $\hat{\lambda}$ of λ .
- (d) For n = 10, and $\bar{X}_n = 5$, make a plot in R of the log-likelihood $\ell(\lambda; X_1, \ldots, X_n)$ over $\lambda \in (5/2, 10)$. Add a vertical line at the position of \bar{X}_n .

(e) Find the restricted MLE $\hat{\lambda}_0$ under H_0 . That is, find

$$\hat{\lambda}_0 = \operatorname*{argmax}_{\lambda \leq \lambda_0} \mathcal{L}(\lambda; X_1, \dots, X_n).$$

Hint: It must be piecewise defined for the cases $\bar{X}_n \leq \lambda_0$ *and* $\bar{X}_n > \lambda_0$ *.*

- (f) Give the likelihood ratio.
- (g) Show that the likelihood ratio test is equivalent to the test

Reject H_0 iff $\bar{X}_n > c^*$

for some value $c^* > 0$. Hint: The function ze^{-z} is strictly decreasing in z for all z > 1.

- (h) Use that fact that $\bar{X}_n \sim \text{Gamma}(n, \lambda/n)$ to find the critical value c^* in part (g) such that the test has size α .
- (i) Under n = 20 and $\lambda_0 = 5$,
 - i. give the critical value c^* in part (g) such that the test has size $\alpha = 0.05$.
 - ii. give the *p*-value corresponding to the observation $\bar{X}_{20} = 5.7$.