STAT 513 hw 4

1. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution, where μ and σ^{2} are unknown, and suppose we are interested in testing $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$.
(a) Give the likelihood function $L\left(\mu, \sigma^{2} ; X_{1}, \ldots, X_{n}\right)$.
(b) Give the log-likelihood function $\ell\left(\mu, \sigma^{2} ; X_{1}, \ldots, X_{n}\right)$.
(c) Find the maximum likelihood estimators $\hat{\mu}$ and $\hat{\sigma}^{2}$ of μ and σ^{2}.
(d) Find an expression for $\hat{\sigma}_{0}^{2}$, where

$$
\hat{\sigma}_{0}^{2}=\operatorname{argmax}_{\sigma^{2}} L\left(\mu_{0}, \sigma^{2} ; X_{1}, \ldots, X_{n}\right) .
$$

(e) Give the likelihood ratio.
(f) Show that the likelihood ratio simplifies to

$$
\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)=\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}}\right]^{n / 2}
$$

(g) Show that for any $c \in[0,1]$ the rejection criterion of the likelihood ratio test, $\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)<$ c, is equivalent to

$$
\sqrt{n}\left|\bar{X}_{n}-\mu_{0}\right| / S_{n}>c^{*}
$$

for some c^{*}.
(h) Use the fact that

$$
X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right) \Longrightarrow \sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n} \sim t_{n-1}
$$

to find a value c^{*} such that the likelihood ratio test has size equal to α for any $\alpha \in(0,1)$.
2. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential (λ) and consider

$$
H_{0}: \lambda \leq \lambda_{0} \text { versus } H_{1}: \lambda>\lambda_{0} .
$$

(a) Show that the likelihood function $\mathcal{L}\left(\lambda ; X_{1}, \ldots, X_{n}\right)$ for λ can be written as

$$
\mathcal{L}\left(\lambda ; X_{1}, \ldots, X_{n}\right)=\lambda^{-n} \exp \left(-n \bar{X}_{n} / \lambda\right)
$$

(b) Give the log-likelihood function $\ell\left(\lambda ; X_{1}, \ldots, X_{n}\right)$ for λ.
(c) Find the MLE $\hat{\lambda}$ of λ.
(d) For $n=10$, and $\bar{X}_{n}=5$, make a plot in R of the \log-likelihood $\ell\left(\lambda ; X_{1}, \ldots, X_{n}\right)$ over $\lambda \in$ $(5 / 2,10)$. Add a vertical line at the position of \bar{X}_{n}.
(e) Find the restricted MLE $\hat{\lambda}_{0}$ under H_{0}. That is, find

$$
\hat{\lambda}_{0}=\underset{\lambda \leq \lambda_{0}}{\operatorname{argmax}} \mathcal{L}\left(\lambda ; X_{1}, \ldots, X_{n}\right) .
$$

Hint: It must be piecewise defined for the cases $\bar{X}_{n} \leq \lambda_{0}$ and $\bar{X}_{n}>\lambda_{0}$.
(f) Give the likelihood ratio.
(g) Show that the likelihood ratio test is equivalent to the test

$$
\text { Reject } H_{0} \text { iff } \bar{X}_{n}>c^{*}
$$

for some value $c^{*}>0$. Hint: The function $z e^{-z}$ is stricty decreasing in z for all $z>1$.
(h) Use that fact that $\bar{X}_{n} \sim \operatorname{Gamma}(n, \lambda / n)$ to find the critical value c^{*} in part (g) such that the test has size α.
(i) Under $n=20$ and $\lambda_{0}=5$,
i. give the critical value c^{*} in part (g) such that the test has size $\alpha=0.05$.
ii. give the p-value corresponding to the observation $\bar{X}_{20}=5.7$.

