STAT 513 hw 5

1. Let $X_{11}, \ldots, X_{1 n_{1}}$ and $X_{21}, \ldots, X_{2 n_{2}}$ be independent random samples from the $\operatorname{Normal}\left(\mu_{1}, \sigma^{2}\right)$ and $\operatorname{Normal}\left(\mu_{1}, \sigma^{2}\right)$ distributions, respectively, where μ_{1}, μ_{2}, and σ^{2} are unknown. Suppose it is of interest to test the hypotheses $H_{0}: \mu_{1}=\mu_{2}$ versus $H_{1}: \mu_{1} \neq \mu_{2}$.
(a) Give the likelihood function $L\left(\mu_{1}, \mu_{2}, \sigma^{2} ; X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)$ for $X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}$. Hint: It is the product of the likelihood functions of the two samples.
(b) Give the log-likelihood function $\ell\left(\mu_{1}, \mu_{2}, \sigma^{2} ; X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)$.
(c) Find the maximum likelihood estimators $\hat{\mu}_{1}, \hat{\mu}_{2}$, and $\hat{\sigma}^{2}$ of μ_{1}, μ_{2}, and σ^{2}, respectively; that is, find

$$
\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{\sigma}^{2}\right)=\operatorname{argmax}_{\mu_{1}, \mu_{2}, \sigma^{2}} L\left(\mu_{1}, \mu_{2}, \sigma^{2} ; X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right) .
$$

Hint: Use calculus methods on the log-likelihood function.
(d) Under H_{0}, we have $\mu_{1}=\mu_{2}=\mu$, say, where μ denotes the common mean. Let $\hat{\mu}_{0}$ and $\hat{\sigma}_{0}^{2}$ be

$$
\left(\hat{\mu}_{0}, \hat{\sigma}_{0}^{2}\right)=\operatorname{argmax}_{\mu, \sigma^{2}} L\left(\mu, \mu, \sigma^{2} ; X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)
$$

Find expressions for $\hat{\mu}_{0}$ and $\hat{\sigma}_{0}^{2}$.
(e) Show that the likelihood ratio

$$
\operatorname{LR}\left(X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)=\frac{L\left(\hat{\mu}_{0}, \hat{\mu}_{0}, \hat{\sigma}_{0}^{2} ; X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)}{L\left(\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{\sigma}^{2} ; X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)}
$$

can be simplified to

$$
\operatorname{LR}\left(X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)=\left[\frac{\sum_{i=1}^{n_{1}}\left(X_{1 i}-\hat{\mu}_{1}\right)^{2}+\sum_{j=1}^{n_{2}}\left(X_{2 j}-\hat{\mu}_{2}\right)^{2}}{\sum_{i=1}^{n_{1}}\left(X_{1 i}-\hat{\mu}_{0}\right)^{2}+\sum_{j=1}^{n_{2}}\left(X_{2 j}-\hat{\mu}_{0}\right)^{2}}\right]^{\left(n_{1}+n_{2}\right) / 2}
$$

(f) Show that for any $c \in[0,1]$, there exists a c_{1} such that the likelihood ratio test

$$
\text { Reject } H_{0} \text { iff } \operatorname{LR}\left(X_{11}, \ldots, X_{1 n_{1}}, X_{21}, \ldots, X_{2 n_{2}}\right)<c
$$

is equivalent to the test

$$
\frac{\left|\bar{X}_{1}-\bar{X}_{2}\right|}{S_{\text {pooled }} \sqrt{1 / n_{1}+1 / n_{2}}}>c_{1}
$$

Note: Please just attempt this question. It is quite tricky. You will get points for trying.
(g) Provide the value c_{1} such that the test in the previous part has size α for any $\alpha \in(0,1)$.
2. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Gamma}(\alpha, \beta)$ distribution with density

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp (-x / \beta) \mathbb{1}(x>0)
$$

where α and β are unknown.
(a) Give the likelihood function $L\left(\alpha, \beta ; X_{1}, \ldots, X_{n}\right)$ for the sample X_{1}, \ldots, X_{n}.
(b) Give the log-likelihood function $\ell\left(\alpha, \beta ; X_{1}, \ldots, X_{n}\right)$ for the sample X_{1}, \ldots, X_{n}.
(c) For any $\alpha \geq 0$, let $\hat{\beta}(\alpha)$ be the value of β which maximizes $L\left(\alpha, \beta ; X_{1}, \ldots, X_{n}\right)$. Get an expression for $\hat{\beta}(\alpha)$.
(d) Consider testing the hypotheses $H_{0}: \alpha=\alpha_{0}$ versus $H_{1}: \alpha \neq \alpha_{0}$ and let $\hat{\alpha}$ be the maximum likelihood estimator for α. Then the likelihood ratio is given by

$$
\begin{aligned}
\operatorname{LR}\left(X_{1}, \ldots, X_{n}\right) & =\frac{\sup _{\left\{\alpha, \beta: \alpha=\alpha_{0}, \beta \geq 0\right\}} L\left(\alpha, \beta ; X_{1}, \ldots, X_{n}\right)}{\sup _{\{\alpha, \beta: \alpha \geq 0, \beta \geq 0\}} L\left(\alpha, \beta ; X_{1}, \ldots, X_{n}\right)} \\
& =\frac{L\left(\alpha_{0}, \hat{\beta}\left(\alpha_{0}\right) ; X_{1}, \ldots, X_{n}\right)}{L\left(\hat{\alpha}, \hat{\beta}(\hat{\alpha}) ; X_{1}, \ldots, X_{n}\right)}
\end{aligned}
$$

Show that $-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)$ can be simplified to

$$
-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)
$$

$$
=-2\left[n \log \left(\frac{\Gamma(\hat{\alpha})}{\Gamma\left(\alpha_{0}\right)}\right)+n\left(\hat{\alpha}-\alpha_{0}\right)\left(\log \bar{X}_{n}-n^{-1} \sum_{i=1}^{n} \log X_{i}+1\right)+n \alpha_{0} \log \alpha_{0}-n \hat{\alpha} \log \hat{\alpha}\right]
$$

(e) The following R code stores in the vector X the survival times of several guinea pigs from the point in time at which they were infected with virulent tubercle bacilli and computes on these data the maximum likelihood estimators $\hat{\alpha}$ and $\hat{\beta}$ for the $\operatorname{Gammma}(\alpha, \beta)$ distribution. The data are taken from Bjerkedal (1960).

```
X <- c(12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52,
    53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62,
    63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84,
    85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131,
    143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376)
library(MASS) # pull in library of functions including the fitdistr() function
fitdistr(X,"gamma") # gives alpha.hat and 1/beta.hat
```

Compute the value of $-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)$ for these data when testing the hypotheses H_{0} : $\alpha=1$ versus $H_{0}: \alpha \neq 1$.
(f) Report the p-value for testing the hypotheses in the previous question, using the asymptotic distribution of $-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)$ under the null hypothesis.
(g) Consider testing $H_{0}: \alpha=\alpha_{0}$ versus $H_{1}: \alpha \neq \alpha_{0}$ using the guinea pig data. Find an interval such that you fail to reject H_{0} at the 0.01 significance level for all α_{0} in the interval. Hint: Compute $-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)$ over many values of α_{0} and find those values of α_{0} (search, say, between $1 / 2$ and 4) for which $-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}\right)<\chi_{1,0.01}^{2}$.
(h) Give an interpretation of this interval.
(i) Based on these results, do you think it would be reasonable to model these data using the Exponential (β) distribution?

References

Bjerkedal, T. (1960). Acquisition of Resistance in Guinea Pigs infected with Different Doses of Virulent Tubercle Bacilli. American Journal of Hygiene, 72(1), 130-48.

