
STAT 513 fa 2020 hw 6

Do NOT use fancy R functions like lm() or t.test() to do any part of this homework.

1. The following data from [2] are body surfaces (cm2) and metabolic rates (kcal/day) measured on a
set of dogs:

Body surface (cm2) Metabolic rate (kcal/day)
10750 1113
8805 982
7500 908
7662 842
5286 626
3724 430
2423 281

Regard the metabolic rate as the response variable and the body surface area as the covariate and
assume that the simple linear regression model

Yi = β0 + β1xi + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent Normal(0, σ2) random variables, is appropriate for these data.

(a) Compute the least-squares estimators β̂0 and β̂1 of β0 and β1.

x <- c(10750,8805,7500,7662,5286,3724,2423) # cm^2

Y <- c(1113,982,908,842,626,430,281) # kcal/day

Y.bar <- mean(Y)

x.bar <- mean(x)

Sxx <- sum( (x - x.bar)^2 )

SYY <- sum( (Y - Y.bar)^2 )

beta1.hat <- cor(x,Y)*sqrt(SYY/Sxx)

beta0.hat <- Y.bar - beta1.hat * x.bar

This gives β̂0 = 61.40537 and β̂1 = 0.1029721.

(b) Make a scatterplot of the metabolic rates versus the body surface areas with the least-squares
line overlaid.

plot(Y ~ x, xlab="body surface area (cm^2)",ylab="metabolic rate (kcal/day)")

abline(beta0.hat,beta1.hat)
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(c) Compute the residuals ε̂i = Yi − Ŷi, where Ŷi = β̂1 + β̂1xi, for i = 1, . . . , n, and use these to
compute the unbiased estimator σ̂2 of σ2. Report the value of σ̂.

Y.hat <- beta0.hat + beta1.hat * x

e.hat <- Y - Y.hat

n <- length(x)

sigma.hat <- sqrt(sum(e.hat^2)/(n-2))

This gives σ̂ = 45.55539.

(d) Give a 99% confidence interval for β1.

lower <- beta1.hat - qt(.995,n-2) * sigma.hat * sqrt( 1 / Sxx )

upper <- beta1.hat + qt(.995,n-2) * sigma.hat * sqrt( 1 / Sxx )

This gives the interval (0.07736797, 0.1285762).

(e) Compute the p-value of these data for testing H0: β1 ≤ 0 versus H1: β1 > 0. Interpret your
answer.

T1 <- ( beta1.hat - 0 ) / (sigma.hat / sqrt(Sxx))

pval <- 1-pt(T1,n-2)

This gives the p-value 8.128529 × 10−6; there is very strong evidence that the slope is
positive, so that higher body surfaces areas are associated with higher metabolic rates.
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(f) Construct a 95% confidence interval for the average metabolic rate of dogs with body surface
area equal to 6000cm2.

Y.hat6000 <- beta0.hat+beta1.hat*6000

lo95ci6000 <- Y.hat6000 - qt(.975,n-2) * sigma.hat * sqrt(1/n+(6000-x.bar)^2/Sxx)

up95ci6000 <- Y.hat6000 + qt(.975,n-2) * sigma.hat * sqrt(1/n+(6000-x.bar)^2/Sxx)

This gives the interval (633.9313, 724.5447).

(g) Construct an interval which will contain with probability 0.95 the metabolic rate of a randomly
selected dog among dogs with body surface area equal to 6000cm2.

lo95pi6000 <- Y.hat6000 - qt(.975,n-2) * sigma.hat*sqrt(1+1/n+(6000-x.bar)^2/Sxx)

up95pi6000 <- Y.hat6000 + qt(.975,n-2) * sigma.hat*sqrt(1+1/n+(6000-x.bar)^2/Sxx)

This gives the interval (553.6752, 804.8008).

(h) Make a scatterplot of the metabolic rates versus the body surface areas with the least-squares
line overlaid. Then, for the sequence of x values in x.seq <- seq(2423,10750,length=500),
add to the plot the upper and lower values of 99% confidence intervals for β0 + β1x as well as
the upper and lower bounds of 99% prediction intervals for new values of Y at these values of
x.

x.seq <- seq(min(x),max(x),length=500)

Y.hat.x.seq <- beta0.hat + beta1.hat * x.seq

se.x.seq <- sigma.hat * sqrt(1/n + (x.seq - x.bar)^2 / Sxx)

lo99conf <- Y.hat.x.seq - qt(.995,n-2) * se.x.seq

up99conf <- Y.hat.x.seq + qt(.995,n-2) * se.x.seq

pred.se.x.seq <- sigma.hat * sqrt(1 + 1/n + (x.seq - x.bar)^2 / Sxx)

lo99pred <- Y.hat.x.seq - qt(.995,n-2) * pred.se.x.seq

up99pred <- Y.hat.x.seq + qt(.995,n-2) * pred.se.x.seq

plot(Y ~ x, xlab="body surface area (cm^2)",ylab="metabolic rate (kcal/day)")

abline(beta0.hat,beta1.hat)

lines(lo99conf~x.seq,lty=2)

lines(up99conf~x.seq,lty=2)

lines(lo99pred~x.seq,lty=3)

lines(up99pred~x.seq,lty=3)
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2. Suppose we observe (x1, Y1), . . . , (xn, Yn) on n subjects, where

Yi = β0 + β1xi + εi, i = 1, . . . , n, (1)

where ε1, . . . , εn are independent Normal(0, σ2) random variables. Moreover, suppose that each of
the values x1, . . . , xn is equal to 0 or 1, according to whether the subject was placed into a control
or a treatment group. That is, suppose

xi =

{
0 if subject i in control group
1 if subject i in treatment group

, i = 1, . . . , n.

(a) i. Give the parameter in Model (1) which is the expected value of Yi when subject i belongs
to the control group, that is when xi = 0.

If xi = 0 then EYi = β0.

ii. Use the parameters in Model (1) to express the expected value of Yi when subject i belongs
to the treatment group, that is when xi = 1.

If xi = 1 then EYi = β0 + β1.

iii. Give the parameter in Model (1) which represents the difference in the expected values of
the responses between the control and treatment groups.

The parameter β1 represents the expected value of the response under the treatment
minus the expected value of the response under the control.
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iv. Let n1 = #{xi = 0} and n2 = #{xi = 1} be the numbers of subjects in the control and
treatment groups and let

Ȳ1 =
1

n1

∑
{i:xi=0}

Yi and Ȳ2 =
1

n2

∑
{i:xi=1}

Yi,

so that Ȳ1 and Ȳ2 are the means of the response variable in the control and treatment
groups. Now, using the fact that

n∑
i=1

[Yi − (β0 + β1xi)]
2 =

∑
{i:xi=0}

(Yi − β0)2 +
∑
{i:xi=1}

[Yi − (β0 + β1)]
2,

show that the least squares estimators β̂0 and β̂1 of β0 and β1 are given by

β̂0 = Ȳ1 and β̂1 = Ȳ2 − Ȳ1.

Let
Qn(β0, β1) =

∑
{i:xi=0}

(Yi − β0)2 +
∑
{i:xi=1}

[Yi − (β0 + β1)]
2.

Now set the partial derivatives of Qn(β0, β1) with respect to β0 and β1 equal to zero
and solve the system of equations:

∂

∂β0
Qn(β0, β1) = −2

∑
{i:xi=0}

(Yi − β0)− 2
∑
{i:xi=1}

[Yi − (β0 + β1)]

= −2[n1(Ȳ1 − β0) + n2(Ȳ2 − β0 − β1)] = 0

∂

∂β1
Qn(β0, β1) = −2

∑
{i:xi=1}

[Yi − (β0 + β1)]

= −2n2(Ȳ2 − β0 − β1) = 0.

The second equation gives β1 = Ȳ2 − β0. Plugging this into the first equation gives

−2[n1(Ȳ1 − β0) + n2(Ȳ2 − β0 − β1)] = −2n1(Ȳ1 − β0) = 0,

which gives β0 = Ȳ1. Therefore, we have

(β̂0, β̂1) = (Ȳ1, Ȳ2 − Ȳ1).

(b) Use the following R code to read in the data from the study in [1], which investigated the
efficacy of procyanidin B-2 from apples as a hair growing agent:

apple_hair <- read.table(file=url("http://users.stat.ufl.edu/~winner/data/apple_hair.dat"))

x <- apple_hair$V1 - 1 # treatment indicator equal to 0 or 1

Y <- apple_hair$V4 # total hair increase
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The covariate in x is an indicator of belonging to the control group (0) or to the treatment
group (1). The response in Y is the total hair increase over six months.

i. Compute the least-squares estimators β̂0 and β̂1 of β0 and β1.

We get β̂0 = 0.08 and β̂1 = 6.598947.

ii. Compute the residuals ε̂i = Yi − Ŷi, where Ŷi = β̂1 + β̂1xi, for i = 1, . . . , n, and use these
to compute the unbiased estimator σ̂2 of σ2. Report the value of σ̂.

We get σ̂ = 5.229006.

iii. Compute the p-value of these data for testing H0: β1 = 0 versus H1: β1 6= 0. Interpret
your answer.

The p-value is 0.003243934. There appears to be fairly strong evidence in favor of the
apple treatment for hair growth! Will definitely bookmark this homework for later in
life.

(c) Let µ1 and µ2 represent the expected total hair increase in the control and treatment groups,
respectively, and separate the data into control and treatment data with

ctrl <- Y[x==0]

trt <- Y[x==1]

i. Make boxplots of the control and treatment data with the command

boxplot(ctrl,trt,names=c("control","treatment"))
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ii. Give the sample means Ȳ1 and Ȳ2 of the control and treatment groups.

We have Ȳ1 = 0.08 and Ȳ2 = 6.678947.

iii. Compute the value of Spooled for the control and treatment data. Compare this to the
value of σ̂ that you computed earlier.

n1 <- length(ctrl)

n2 <- length(trt)

Y1.bar <- mean(ctrl)

Y2.bar <- mean(trt)

S.pooled <- sqrt( (var(ctrl)*(n1-1) + var(trt)*(n2-1))/(n1+n2-2) )

We get Spooled = 5.229006. Wow! This is the same value that we got for σ̂. My head is
about to explode!

iv. Compute the p-value of these data for testing H0: µ1 − µ2 = 0 versus H1: µ1 − µ2 6= 0
with the equal-variances two-sample t-test. Interpret your answer.

T <- (Y1.bar - Y2.bar)/(S.pooled * sqrt(1/n1 + 1/n2) )

2*(1 - pt(abs(T),n1+n2-2))
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The p-value is 0.003243934. That’s the same p-value we got before! It seems we can
use the framework of the linear regression model to do some of the things which we
have already done. Sure is pretty neat stuff!

v. Keep your head from exploding.

It was hard, but I managed.
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