STAT 513 fa 2020 hw 7

Do NOT use fancy R functions like $\operatorname{lm}()$ or $t . t e s t()$ to do any part of this homework.

1. Bring into the workspace the built-in R data set called Puromycin using the command data (Puromycin). You may type ?Puromycin to read more about the data. It contains the variables rate, conc, and state. Let Y_{1}, \ldots, Y_{n} denote the values in the column rate, $x_{11}, \ldots, x_{n 1}$ the values in the column conc, and $x_{12}, \ldots, x_{n 2}$ the values defined by

$$
x_{i 2}=\left\{\begin{array}{ll}
1 & \text { if } \text { state }_{i}=\text { treated } \\
0 & \text { if state } \\
i & =\text { untreated }
\end{array} \quad \text { for } i=1, \ldots, n,\right.
$$

where state_{i} is the i th value of the column state. Suppose we wish to fit the model

$$
Y_{i}=\beta_{0}+\beta_{1} \log \left(x_{i 1}\right)+\beta_{2} x_{i 2}+\beta_{3} x_{i 2} \log \left(x_{i 1}\right)+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

where we believe that $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables.
(a) Define new covariate values $u_{i 1}, u_{i 2}$, and $u_{i 3}, i=1, \ldots, n$, such that the above model can be expressed as

$$
Y_{i}=\beta_{0}+\beta_{1} u_{i 1}+\beta_{2} u_{i 2}+\beta_{3} u_{i 3}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

Your answer should be like $u_{i 1}=\quad, u_{i 2}=\quad$, and $u_{i 3}=$.
(b) State the regression model for the treated and the untreated cases; that is, give an expression for Y_{i} when $x_{i 2}=1$ and when $x_{i 2}=0$.
(c) Use R to construct the design matrix

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & u_{11} & u_{12} & u_{13} \\
\vdots & \vdots & \vdots & \\
1 & u_{n 1} & u_{n 2} & u_{n 3}
\end{array}\right]
$$

and then compute the least-squares estimators of $\beta_{0}, \beta_{1}, \beta_{2}$, and β_{3}.
(d) The following R code produces a scatterplot of Y_{1}, \ldots, Y_{n} against the values $\log \left(x_{11}\right), \ldots, \log \left(x_{n 1}\right)$, where circles are used for the treatment cases and triangles for the untreated cases:

```
plot(Y~u1,pch=ifelse(u2==1,1,2),xlab="log(conc)",ylab="rate")
legend(x = -3.75, y = 200,legend=c("treated","untreated"),pch=c(1,2),bty="n")
```

Add some commands to this R code in order to produce a plot like the one below, with least-squares lines fitted to the treated and untreated cases. Hint: Think about how to use the least-squares estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}$ and $\hat{\beta}_{3}$ to produce these lines with the abline()function.

(e) Suppose we wish to investigate whether the treatment has any effect; more precisely, suppose we wish to test whether the regression functions for treated and untreated cases are the same. Give a set of hypotheses we could test in order to decide whether the two regression functions are equal.
(f) Consider the plot below, in which a least-squares line has been fitted to the points without regard for the treatment variable. Give the intercept and slope of this line.

Page 2
(g) Compute the sum of the squared residuals for the model in part (f).
(h) Compute the sum of the squared residuals for the model in part (a).
(i) Compute the F-statistic for testing the hypotheses in part (e) with the full-reduced model F-test.
(j) Give the critical value for the full-reduced model F-test at the $\alpha=0.01$ significance level.
(k) State your conclusion about the hypotheses in part (e) at the $\alpha=0.01$ significance level.
(l) Give the p-value of these data for testing the hypotheses in part (e).
(m) Using the full model in part (a), construct a 95% confidence interval for the height of the true regression function for treated cases when the natural \log of the concentration is equal to -1 .
(n) Using the full model in part (a), construct a 95% confidence interval for the difference in the heights of the true regression functions for treated and untreated cases when the natural log of the concentration is equal to -1 .
(o) Give the ANOVA table resulting from fitting the full model in part (a).
2. Show that in the $p=1$ case (simple linear regression), the matrix formula $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$ gives

$$
\hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{x}_{n} \quad \text { and } \quad \hat{\beta}_{1}=S_{x Y} / S_{x x} .
$$

Hint: for any 2×2 invertible matrix we have

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

