
STAT 513 fa 2020 hw 7

Do NOT use fancy R functions like lm() or t.test() to do any part of this homework.

1. Bring into the workspace the built-in R data set called Puromycin using the command data(Puromycin).
You may type ?Puromycin to read more about the data. It contains the variables rate, conc, and
state. Let Y1, . . . , Yn denote the values in the column rate, x11, . . . , xn1 the values in the column
conc, and x12, . . . , xn2 the values defined by

xi2 =

{
1 if statei = treated

0 if statei = untreated
for i = 1, . . . , n,

where statei is the ith value of the column state. Suppose we wish to fit the model

Yi = β0 + β1 log(xi1) + β2xi2 + β3xi2 log(xi1) + εi, i = 1, . . . , n,

where we believe that ε1, . . . , εn are independent Normal(0, σ2) random variables.

(a) Define new covariate values ui1, ui2, and ui3, i = 1, . . . , n, such that the above model can be
expressed as

Yi = β0 + β1ui1 + β2ui2 + β3ui3 + εi, i = 1, . . . , n.

Your answer should be like ui1 = , ui2 = , and ui3 = .

Define u1i = log(xi1), ui2 = xi2, and ui3 = log(xi1)xi2, for i = 1, . . . , n.

(b) State the regression model for the treated and the untreated cases; that is, give an expression
for Yi when xi2 = 1 and when xi2 = 0.

Treated:
Yi = (β0 + β2) + (β1 + β3) log(xi1) + εi

Untreated:
Yi = β0 + β1 log(xi1) + εi

(c) Use R to construct the design matrix

X =

 1 u11 u12 u13
...

...
...

1 un1 un2 un3

and then compute the least-squares estimators of β0, β1, β2, and β3.

The R code

n <- nrow(Puromycin)

Y <- Puromycin$rate

u1 <- log(Puromycin$conc)

u2 <- ifelse(Puromycin$state=="untreated",0,1)

u3 <- u1*u2

X <- cbind(rep(1,n),u1,u2,u3)

beta.hat <- solve(t(X) %*% X) %*% t(X) %*% Y

gives β̂0 = 164.58839, β̂1 = 26.98207, β̂2 = 44.60611, and β̂3 = 10.12837.

(d) The following R code produces a scatterplot of Y1, . . . , Yn against the values log(x11), . . . , log(xn1),
where circles are used for the treatment cases and triangles for the untreated cases:

plot(Y~u1,pch=ifelse(u2==1,1,2),xlab="log(conc)",ylab="rate")

legend(x = -3.75, y = 200,legend=c("treated","untreated"),pch=c(1,2),bty="n")

Add some commands to this R code in order to produce a plot like the one below, with
least-squares lines fitted to the treated and untreated cases.Hint: Think about how to use the
least-squares estimates β̂0, β̂1, β̂2 and β̂3 to produce these lines with the abline()function.

●

●

●

●

●

●

●

●

●

●
●

●

−4 −3 −2 −1 0

50
10

0
15

0
20

0

log(conc)

ra
te

● treated
untreated

Use these commands:

abline(beta.hat[1],beta.hat[2])

abline(beta.hat[1]+beta.hat[3],beta.hat[2]+beta.hat[4],lty=3)

Page 2

(e) Suppose we wish to investigate whether the treatment has any effect; more precisely, suppose
we wish to test whether the regression functions for treated and untreated cases are the same.
Give a set of hypotheses we could test in order to decide whether the two regression functions
are equal.

We wish to test the hypotheses

H0: β3 = β4 = 0 versus H1: Either β3 or β4 or both are not equal to zero.

If β3 = β4 = 0, then the regression function for the treated cases is the same as for the
untreated cases.

(f) Consider the plot below, in which a least-squares line has been fitted to the points without
regard for the treatment variable. Give the intercept and slope of this line.

●

●

●

●

●

●

●

●

●

●
●

●

−4 −3 −2 −1 0

50
10

0
15

0
20

0

log(conc)

ra
te

● treated
untreated

This fitted line corresponds to a reduced model in which the treatment variable is ignored.
So we omit the variables ui2 and ui3 from the model. In R, we do the following:

X.red <- cbind(rep(1,n),u1)

beta.hat.red <- solve(t(X.red) %*% X.red) %*% t(X.red) %*% Y

plot(Y~u1,pch=ifelse(u2==1,1,2),xlab="log(conc)",ylab="rate")

legend(x = -3.75, y = 200,legend=c("treated","untreated"),pch=c(1,2),bty="n")

abline(beta.hat.red[1],beta.hat.red[2],lty=2)

This gives the intercept 190.0854 and the slope 33.20268.

Page 3

(g) Compute the sum of the squared residuals for the model in part (f).

We do

e.hat.red <- Y - X.red %*% beta.hat.red

SSE.red <- sum(e.hat.red^2)

which gives 6210.028.

(h) Compute the sum of the squared residuals for the model in part (a).

We do

e.hat <- Y - X %*% beta.hat

SSE.full <- sum(e.hat^2)

which gives 1591.245.

(i) Compute the F -statistic for testing the hypotheses in part (e) with the full-reduced model
F -test.

This is the full-reduced model F -test with r = 1. Note that p = 3. Therefore the test
statistic is

(SSERed − SSEFull)/(3 − 1)

SSEFull /(23 − 3 − 1)
,

which we compute in R with

F.stat <- ((SSE.red - SSE.full)/(3-1))/(SSE.full/(n-3-1))

which gives 27.5749.

(j) Give the critical value for the full-reduced model F -test at the α = 0.01 significance level.

The critical value is the upper α quantile of the F3−1,23−3−1 distribution, which is

qf(.99,3-1,n-3-1) = 5.925879.

(k) State your conclusion about the hypotheses in part (e) at the α = 0.01 significance level.

Since 27.5749 > 5.925879 we reject H0 : β3 = β4 = 0 at the α = 0.05 significance level.

(l) Give the p-value of these data for testing the hypotheses in part (e).

Page 4

The p-value is the smallest significance level at which the test statistic value 27.5749 would
lead us to reject the null hypothesis. This is equal to the area under the pdf of the
F3−1,23−3−1 distribution to the right of 27.5749, which is given by

1-pf(F.stat,2,n-3-1) = 2.410538 × 10−6.

(m) Using the full model in part (a), construct a 95% confidence interval for the height of the true
regression function for treated cases when the natural log of the concentration is equal to −1.

The height of the regression function for treated cases when the natural log of the concen-
tration is equal to −1 is given by

β0 + β1(−1) + β2(1) + β3(−1) = β0 − β1 + β2 − β3,

which can be written as aTβ, with a = (1,−1, 1,−1)T and β = (β0, β1, β2, β3)
T . From the

formula in the notes, we get a 95% confidence interval for aTβ with the following:

sigma.hat <- sqrt(sum(e.hat) / (n - 3 - 1))

a = c(1,-1,1,-1)

loco <- t(a)%*%beta.hat-qt(.975,n-3-1)*sigma.hat*sqrt(t(a)%*%solve(t(X)%*%X)%*%a)

upco <- t(a)%*%beta.hat+qt(.975,n-3-1)*sigma.hat*sqrt(t(a)%*%solve(t(X)%*%X)%*%a)

which gives the interval (165.6007, 178.5674).

(n) Using the full model in part (a), construct a 95% confidence interval for the difference in the
heights of the true regression functions for treated and untreated cases when the natural log
of the concentration is equal to −1.

The difference in these heights is given by

β0 + β1(−1) + β2(1) + β3(−1) − [β0 + β1(−1)] = β2 − β3,

which can be written as aTβ, with a = (0, 0, 1,−1)T . In R we use the code

a = c(0,0,1,-1)

loco <- t(a)%*%beta.hat-qt(.975,n-3-1)*sigma.hat*sqrt(t(a)%*%solve(t(X)%*%X)%*%a)

upco <- t(a)%*%beta.hat+qt(.975,n-3-1)*sigma.hat*sqrt(t(a)%*%solve(t(X)%*%X)%*%a)

which gives the interval (24.67704, 44.27844).

Page 5

a = c(0,0,1,-1)

loco <- t(a)%*%beta.hat-qt(.975,n-3-1)*sigma.hat*sqrt(t(a)%*%solve(t(X)%*%X)%*%a)

upco <- t(a)%*%beta.hat+qt(.975,n-3-1)*sigma.hat*sqrt(t(a)%*%solve(t(X)%*%X)%*%a)

(o) Give the ANOVA table resulting from fitting the full model in part (a).

In R we make the following calculations:

Y.hat <- X %*% beta.hat

SST <- sum((Y - mean(Y))^2)

SSE <- sum((Y - Y.hat)^2)

SSM <- SST - SSE

MSE <- SSE / (n-3-1)

MSM <- SSM / 3

Fn <- MSM/MSE

1-pf(Fn,3,n-3-1)

Then the ANOVA table is
df SS MS Fn p-value

Model 3 48074.06 16024.69 191.3401 2.264855 × 10−14

Error 19 1591.245 83.74976
Total 22 49665.3

2. Show that in the p = 1 case (simple linear regression), the matrix formula β̂ = (XTX)−1XTY gives

β̂0 = Ȳn − β̂1x̄n and β̂1 = SxY /Sxx.

Hint: for any 2 × 2 invertible matrix we have[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

We have

XTY =

[∑n
i=1 Yi∑n

i=1 xiYi

]
and XTX =

[
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i .

]
Applying the inversion formula for a 2 × 2 matrix, we have

(XTX)−1 =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

[∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

]
=

1

nSxx

[∑n
i=1 x

2
i −nx̄n

−nx̄n n

]
.

Page 6

Finally

(XTX)−1XTY =
1

nSxx

[∑n
i=1 x

2
i −nx̄n

−nx̄n n

] [∑n
i=1 Yi∑n

i=1 xiYi

]
=

1

Sxx

[
Ȳn
∑n

i=1 x
2
i − x̄n

∑n
i=1 xiYi

−nx̄nȲn +
∑n

i=1 xiYi

]
=

1

Sxx

[
Ȳn(
∑n

i=1 x
2
i − nx̄2n) − x̄n(

∑n
i=1 xiYi − nx̄nȲn)∑n

i=1(xi − x̄n)(Yi − Ȳn)

]
=

[
Ȳn − x̄nSxY /Sxx

SxY /Sxx

]
,

which verifies the result.

Page 7

