STAT 513 hw 9

1. Suppose a study of the efficacy of a treatment results in the following table of outcomes:

	Successes	Failures	Total
Treatment	20	5	25
Control	10	16	26
Total	30	21	51

- (a) State the null and alternate hypotheses which are likely of interest to the researchers.
- (b) i. Compute the test statistic for the likelihood ratio test of your hypotheses from part (a).
 - ii. Give the p-value.
- (c) i. Compute the test statistic for Pearson's chi-squared test of your hypotheses from part (a).
 - ii. Give the p-value.
- (d) Give the p-value of Fisher's exact test of your hypotheses in part (a).
- 2. The following knee injury data in women collegiate rugby players is taken from [2]. It is of interest to know whether the types of injuries a player experiences are associated with the position (Forward, Back) she plays.

	Meniscal Tear	MCL Tear	ACL Tear	Other
Forward	13	14	7	4
Back	12	9	14	3

- (a) i. Compute the test statistic for the likelihood ratio test of association.
 - ii. Give the p-value (make sure you choose the right degrees of freedom!).
- (b) i. Compute the test statistic for Pearson's chi-squared test of association.
 - ii. Give the p-value.
- 3. Consider the following data taken from [1], which result from looking through a microscope at samples of milk film and counting the number of bacterial colonies within the field of vision. A total of 400 observations were gathered and the number of bacterial colonies was recorded for each of them:

# Bacterial Colonies	# Microscopic fields
0	56
1	104
2	80
3	62
4	42
5	27
6	9
7	9
8	5
9	3
10	2
19	1

- (a) Let X_i represent the number of bacterial colonies in microscopic field i, with i = 1, ..., 400. Assume for a moment that the number of bacterial colonies in a microscopic field follows the Poisson(λ) distribution for some value of λ . Compute the maximum likelihood estimator of λ based on the above data.
- (b) If the bacterial colony counts truly followed a Poisson distribution with mean equal to λ, where λ is the maximum likelihood estimator of λ computed in part (a), what would be the expected # of microscopic fields corresponding to each number of bacterial counts? That is, in how many microscopic fields out of 400 would we expect to see 0 bacterial colonies, 1 bacterial colony, and so on? Make a table like the table above, but with the numbers in the right-hand column replaced by the expected numbers of microscopic fields. Hint: the first one is dpois(0,lambda.hat)*400.
- (c) From looking at these numbers, do you believe the # of bacterial colonies follows a Poisson distribution? Explain your answer.
- (d) Pearson's chi-squared test is often used to test for what is called the "goodness-of-fit" of a probability distribution to some observed data, as this test statistic provides a useful way to compare observed counts to expected counts. Compute the test statistic of Pearson's chi-squared test on these data, which is given by

$$\sum_{i=1}^{12} (O_i - E_i)^2 / E_i,$$

where O_1, \ldots, O_{12} are observed numbers of microscopic fields and E_1, \ldots, E_{12} are the expected numbers of microscopic fields according to the Poisson(2.44) distribution. *Hint: You get a crazy-huge number*.

(e) It was naïve of us to compute Pearson's test statistic in the previous part, because some of the expected counts are very small, almost equal to zero; recall that we require expected counts to be greater than or equal to 5 in order to use Pearson's chi-squared test. What can we do? Let's collapse the last few rows of the tables by summing together the rows for which the # of bacterial colonies is greater than or equal to 6, so that we have the following:

# Bacterial Colonies	# Microscopic fields	$\mathbb{E}[\# \text{Microscopic fields}]$
0	56	34.86
1	104	85.07
2	80	103.78
3	62	84.41
4	42	51.49
5	27	25.13
≥ 6	29	15.23

Recompute the test statistic for Pearson's chi-squared test, this time with

$$\sum_{i=1}^{7} (O_i - E_i)^2 / E_i.$$

(f) Under the null hypothesis, the test statistic converges in distribution to a random variable with the χ_6^2 distribution, since we are considering a table with 7 cells in a column, and 7-1=6. Use this information to compute a p-value for the test statistic computed in part (e). Use the p-value to make a conclusion about whether or not the # of bacterial colonies follows a Poisson distribution.

References

- [1] Chester Ittner Bliss and Ronald A Fisher. Fitting the negative binomial distribution to biological data. *Biometrics*, 9(2):176–200, 1953.
- [2] Andrew S. Levy, Merrick J. Wetzler, Marie Lewars, and William Laughlin. Knee injuries in women collegiate rugby players. *The American journal of sports medicine*, 25(3):360–362, 1997.