
STAT 513 hw 9

1. Suppose a study of the efficacy of a treatment results in the following table of outcomes:

Successes Failures Total
Treatment 20 5 25

Control 10 16 26
Total 30 21 51

(a) State the null and alternate hypotheses which are likely of interest to the researchers.

We wish to test H0: p1 = p2 versus H1: p1 6= p2, where p1 and p2 are the probabilities
of success in the treatment and control groups. We could also formulate the hypotheses
as H0: there is no association between the treatment and success versus H1: there is an
association between treatment and success.

(b) i. Compute the test statistic for the likelihood ratio test of your hypotheses from part (a).

ii. Give the p-value.

The following R code gives the answer:

# create matrices of observed and expected counts

O <- matrix(c(20,5,10,16),2,byrow=TRUE)

E <- apply(O,1,sum) %*% t(apply(O,2,sum))/sum(O)

# get LRT test statistic and p-value

G <- 2*sum(O*log(O/E))

1 - pchisq(G,1)

The test statistic value is 9.437829 and the p-value is 0.002125549.

(c) i. Compute the test statistic for Pearson’s chi-squared test of your hypotheses from part (a).

ii. Give the p-value.

# get Pearson’s chi-squared test statistic and p-value

Chisq <- sum((O - E)^2/E)

1 - pchisq(Chisq,1)

The test statistic value is 9.079121 and the p-value is 0.002585443.

(d) Give the p-value of Fisher’s exact test of your hypotheses in part (a).

The following R code gives the answer:



# perform Fisher’s exact test

Xobs <- O[1,1]

R1 <- O[1,1] + O[1,2]

C1 <- O[1,1] + O[2,1]

N <- sum(O)

obs.hyper.prob <- dhyper(Xobs, n = N - R1, m = R1, k = C1)

all.hyper.probs <- dhyper(max(0,C1-(N-R1)):min(C1,R1),n = N - R1, m = R1, k = C1)

sum(all.hyper.probs[all.hyper.probs<=obs.hyper.prob])

The p-value is 0.004171008.

2. The following knee injury data in women collegiate rugby players is taken from [2]. It is of interest
to know whether the types of injuries a player experiences are associated with the position (Forward,
Back) she plays.

Meniscal Tear MCL Tear ACL Tear Other
Forward 13 14 7 4

Back 12 9 14 3

(a) i. Compute the test statistic for the likelihood ratio test of association.

ii. Give the p-value (make sure you choose the right degrees of freedom!).

The following R code gives the answer:

# create matrices of observed and expected counts

O <- matrix(c(20,5,10,16),2,byrow=TRUE)

E <- apply(O,1,sum) %*% t(apply(O,2,sum))/sum(O)

# get LRT test statistic and p-value

G <- 2*sum(O*log(O/E))

1 - pchisq(G,3)

The test statistic value is 3.657628 and the p-value is 0.3008863.

(b) i. Compute the test statistic for Pearson’s chi-squared test of association.

ii. Give the p-value.

# get Pearson’s chi-squared test statistic and p-value

Chisq <- sum((O - E)^2/E)

1 - pchisq(Chisq,3)

The test statistic value is 3.603147 and the p-value is 0.3076286.
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3. Consider the following data taken from [1], which result from looking through a microscope at
samples of milk film and counting the number of bacterial colonies within the field of vision. A
total of 400 observations were gathered and the number of bacterial colonies was recorded for each
of them:

# Bacterial Colonies # Microscopic fields
0 56
1 104
2 80
3 62
4 42
5 27
6 9
7 9
8 5
9 3
10 2
19 1

(a) Let Xi represent the number of bacterial colonies in microscopic field i, with i = 1, . . . , 400.
Assume for a moment that the number of bacterial colonies in a microscopic field follows the
Poisson(λ) distribution for some value of λ. Compute the maximum likelihood estimator of λ
based on the above data.

The maximum likelihood estimator is the sample mean. The following R code computes
the mean number of bacterial colonies:

numBact <- c(0,1,2,3,4,5,6,7,8,9,10,19)

numMicro <- c(56,104,80,62,42,27,9,9,5,3,2,1)

lambda.hat <- sum(numBact * numMicro)/400

The sample mean is 2.44, so the maximum likelihood estimator of λ is λ̂ = 2.44.

(b) If the bacterial colony counts truly followed a Poisson distribution with mean equal to λ̂, where
λ̂ is the maximum likelihood estimator of λ computed in part (a), what would be the expected
# of microscopic fields corresponding to each number of bacterial counts? That is, in how
many microscopic fields out of 400 would we expect to see 0 bacterial colonies, 1 bacterial
colony, and so on? Make a table like the table above, but with the numbers in the right-
hand column replaced by the expected numbers of microscopic fields. Hint: the first one is
dpois(0,lambda.hat)*400.

We can get the expected numbers of microscopic fields with the R command
round(dpois(numBact,lambda.hat)*400,2), which also rounds them to the nearest 1/100.
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# Bacterial Colonies # Microscopic fields
0 34.86
1 85.07
2 103.78
3 84.41
4 51.49
5 25.13
6 10.22
7 3.56
8 1.09
9 0.29
10 0.07
19 0.00

(c) From looking at these numbers, do you believe the # of bacterial colonies follows a Poisson
distribution? Explain your answer.

The expected counts seem quite different from the observed counts, so it seems unlikely
that the # of bacterial colonies follows a Poisson distribution.

(d) Pearson’s chi-squared test is often used to test for what is called the “goodness-of-fit” of a
probability distribution to some observed data, as this test statistic provides a useful way to
compare observed counts to expected counts. Compute the test statistic of Pearson’s chi-
squared test on these data, which is given by

12∑
i=1

(Oi − Ei)
2/Ei,

where O1, . . . , O12 are observed numbers of microscopic fields and E1, . . . , E12 are the expected
numbers of microscopic fields according to the Poisson(2.44) distribution. Hint: You get a
crazy-huge number.

The following R code computes the test statistic:

O <- numMicro

E <- round(dpois(numBact,lambda.hat)*400,2)

sum( (O - E)^2/E)

We get 152162218, or infinity if we have rounded the expected counts.

(e) It was näıve of us to compute Pearson’s test statistic in the previous part, because some of the
expected counts are very small, almost equal to zero; recall that we require expected counts
to be greater than or equal to 5 in order to use Pearson’s chi-squared test. What can we do?
Let’s collapse the last few rows of the tables by summing together the rows for which the # of
bacterial colonies is greater than or equal to 6, so that we have the following:
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# Bacterial Colonies # Microscopic fields E[ # Microscopic fields ]
0 56 34.86
1 104 85.07
2 80 103.78
3 62 84.41
4 42 51.49
5 27 25.13
≥ 6 29 15.23

Recompute the test statistic for Pearson’s chi-squared test, this time with

7∑
i=1

(Oi − Ei)
2/Ei.

The following R code computes the test statistic.

O.trunc <- c(O[1:6],sum(O[-c(1:6)]))

E.trunc <- c(E[1:6],sum(E[-c(1:6)]))

sum((O.trunc - E.trunc)^2/E.trunc)

We get the value 42.75711.

(f) Under the null hypothesis, the test statistic converges in distribution to a random variable with
the χ2

6 distribution, since we are considering a table with 7 cells in a column, and 7 − 1 = 6.
Use this information to compute a p-value for the test statistic computed in part (e). Use the
p-value to make a conclusion about whether or not the # of bacterial colonies follows a Poisson
distribution.

We get the p-value 1 - pchisq(42.75711,6) = 1.302903 × 10−7, so we reject the null
hypothesis that the # of bacterial colonies follows a Poisson distribution.
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