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Bernoulli trials, binomial and hypergeometric distributions

Karl Gregory

The Bernoulli trial

Figure 1: Jakob I. Bernoulli (1655 – 1705)

Definition: Bernoulli Trial

A Bernoulli trial is a statistical experiment for which there are two possible outcomes. We
often give the outcomes the names “success” and “failure”. We denote by p the probability
of a success.

Example. Shoot a freethrow and call a basket a success (LeBron has a higher p than you).

Example. Flip a coin and call heads a success. The probability of success is p = 0.5 if the
coin is fair.

We often encode the outcome of a Bernoulli trial in a random variable which takes the value
1 if the outcome was a “success” and 0 if the outcome was a “failure”. The probability
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distribution of such a random variable is called a Bernoulli distribution.

Definition: Bernoulli Distribution

Let X be a random variable taking the value 1 with probability p and the value 0 with
probability 1 − p. Then the probabilities P (X = x) for x in X = {0, 1} are given by the
expression

P (X = x) = px(1− p)1−x.

The probability distribution of X is called the Bernoulli distribution with probability of
success equal to p.

If X is a random variable having the Bernoulli distribution with probability of success equal
to p, then we write X ∼ Bernoulli(p).

The binomial distribution

We are often interested in the number of successes we observe in a sequence of independent
Bernoulli trials.

Example. Flip a coin four times and let X be the number of heads, i.e. successes. We can
write down the probability distribution of X by listing the possible sequences of successes
and failures:

S =


TTTT,
TTTH, TTHT, THTT, HTTT,
TTHH, THTH, THHT, HTTH, HTHT, HHTT
HHHT, HHTH, HTHH, THHH,
HHHH

 .

Since each sequence of successes and failures is equally likely, we have the following:

x 0 1 2 3 4
P (X = x) 1/16 4/16 6/16 4/16 1/16
P (X ≤ x) 1/16 5/16 11/16 15/16 16/16

Suppose now that we were to flip a coin 12 times and we wanted to know the probabilities
of getting 0, 1, 2, or 3 heads, and so on. As the number of coin tosses increases, it quickly
becomes very burdensome to list all the possible sequences of coin flips. In fact, flipping a
coin 12 times is like drawing a ball from each of 12 urns, each of which contains two balls.
There are 212 = 4, 096 ways to do this. Nobody wants to list all of these possible sequences!
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The binomial distribution comes to the rescue. It gives us the probability distribution of
the number of successes in n independent Bernoulli trials when the probability of success is
equal to p.

Definition: Binomial distribution

Let X be the number of successes in n independent Bernoulli trials having success proba-
bility p. Then the probabilities P (X = x) for x in X = 0, 1, . . . , n are given by

P (X = x) =

(
n

x

)
px(1− p)n−x.

The distribution with these probabilities is called the binomial distribution with the number
of trials equal to n and with success probability equal to p.

If X is a random variable with the binomial distribution with the number of trials equal to
n and with success probability equal to p, then we write X ∼ Binomial(n, p).

Let’s dissect the expression

P (X = x) =

(
n

x

)
px(1− p)n−x.

The quantity
(
n
x

)
is the number of ways we can choose x of the n trials to be the successes.

That is, it is the number of length-n success-failure sequences containing exactly x successes.
Each sequence of successes and failures containing exactly x successes occurs with probability
px(1− p)n−x, which is p raised to the number of successes times (1− p) raised to the number
of failures. So the sum of the probabilities of all outcomes having x successes out of n trials
is given by

(
n
x

)
px(1− p)n−x.

If X has the Binomial(n, p) distribution, we can get compute the cumulative probabilities
P (X ≤ x) for x = 0, 1, . . . , n as

P (X ≤ x) =
x∑

i=0

(
n

i

)
pi(1− p)n−i.

Exercise. Suppose you shoot 10 freethrows and you let X be the number of baskets you
make. Suppose that you make freethrows with probability 0.3 and that all your shots are
independent.

1. What is the probability that you will make 3 of the 10 baskets?
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Answer: The 10 freethrows are 10 independent Bernoulli trials, so we can use the
binomial distribution, calling a basket a success:

P (X = 3) =

(
10

3

)
(0.3)3(1− 0.3)10−3

=
10 · 9 · 8

3 · 2
(0.027)(0.0823543)

= 0.267.

We can tell R to compute this with the command dbinom(x=3,size=10,prob=.3).

2. What is the probability that you make 6 or more baskets?

Answer:

P (X ≥ 6) = 1− P (X ≤ 5) = 1−
5∑

i=0

(
10

i

)
(0.3)i(1− 0.3)n−i = 0.04734899.

The reason we change P (X ≥ 6) to 1−P (X ≤ 5) is that R has a function pbinom() to
compute the cumulative probabilities of binomial random variables. We can compute
the above with

1 - pbinom(q = 5,size=10,prob=.3)

Note that we needed to put q = 5.

Mean and variance of a binomial random variable

If X ∼ Binomial(n, p), then

µX = EX = np

σ2
X = VarX = np(1− p).

These expressions can be obtained by computing

EX =
n∑

x=0

x

(
n

x

)
px(1− p)n−x

VarX =
n∑

x=0

(x− µX)2
(
n

x

)
px(1− p)n−x,

but these are fairly tricky. Don’t worry about it!
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Random sampling and the hypergeometric distribution

Let us return now to one of the main goals of Statistics: getting information about a popu-
lation from a random sample. Let us suppose that we have a population with N elements
(people, critters, financial transactions, experimental units, etc.), and we draw a sample of
size n. Suppose further that the members of the population may be classified as “successes”
and “failures”, that is, suppose we are interested in some binary (taking two values) trait
of the population members. Eventually, the goal will be to make a guess at the proportion
of successes present in the population based on our sample of size n. To this end, we would
like to understand how the number of successes in our sample will behave. That is, if X is
the number of successes in our sample of size n drawn from a population of size N which
contains, say M successes, we would like to know the probability distribution of X.

Exercise. Suppose we take a sample of size 5 from a population with 100 people of whom 5
are smokers. What is the probability that exactly 1 person in our sample will be a smoker?

Answer: There are
(
5
1

)
ways to choose 1 of the 5 smokers. If we choose one smoker, then

the other four in our sample will be nonsmokers, of which there are a total of 95 in the
population. We can select 4 people from 95 people in

(
95
4

)
ways. So there are

(
5
1

)
×
(
95
4

)
ways

to get exactly one of the 5 smokers in a sample of 5. If divide this by the total number of
ways in which we can sample 5 people from 100 people, we get

P (1 smoker in sample of 5) =

(
5
1

)(
95
4

)(
100
5

) =
5!
1!4!

95!
4!91!

100!
5!95!

=
5 · 95! · 95! · 5!

4! · 91! · 100!

=
5 · 5 · 95 · 94 · 93 · 92

100 · 99 · 98 · 97 · 96
= 0.2114.

More generally, we can write down the distribution of X as follows:

Definition: Hypergeometric distribution

Suppose we draw K marbles from a bag of N marbles, M of which are red, and let X be
the number of red marbles drawn. Then the probabilities P (X = x) are given by

P (X = x) =

(
M
x

)(
N−M
K−x

)(
N
K

) for x = max{K − (N −M), 0}, . . . ,min{M,K}.

The distribution with these probabilities is called the hypergeometric distribution.

The support X of the hypergeometric distribution is actually kind of complicated; if the
number of marbles K that we draw is greater than or equal to the number of non-red
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marbles N −M in the bag, then we must draw at least K− (N −M) red marbles. Likewise,
if the number of marbles K that we draw is less than the number of red marbles M in the
bag, then we can draw at most K red marbles. So the possible values of X are given by

max{K − (N −M), 0}, . . . ,min{M,K}.

If X is a random variable with a hypergeometric distribution corresponding to drawing K
marbles from a bag of N , of which M are red, and letting X equal the number of red marbles
drawn, then we write X ∼ Hypergeometric(N,M,K). Furthermore, the mean and variance
of X are given by

EX = K
M

N

VarX = K
M

N

[
(N −K)(N −M)

N(N − 1)

]
.

Example. Suppose that in a class of 20 students, 12 of the students have 28 teeth. Consider
drawing a sample of 5 students and letting X be the number of students among the 5 who
have 28 teeth. We can use the hypergeometric distribution to tabulate the probability
distribution of X:

x 0 1 2 3 4 5
P (X = x) 0.004 0.054 0.238 0.397 0.255 0.051
P (X ≤ x) 0.004 0.058 0.296 0.693 0.949 1.000

We can get the values in the top row with the R commands

round(dhyper(x=0:5 , m = 12 , n = 20 - 12 , k = 5),3)

or by putting x <- 0:5 and then executing

round(choose(12,x)*choose(20-12,5-x)/choose(20,5),3)

The values in the bottom row can be obtained with

round(phyper(q=0:5 , m = 12 , n = 20 - 12 , k = 5),3)

or by putting x <- 0:5 and then executing

round(cumsum(choose(12,x)*choose(20-12,5-x)/choose(20,5)),3)

Note that in the dhyper() function, m is our M , n is our N −M , and k is our K. Type
?dhyper to access the help file for the function dhyper, which describes the quantities in
terms of drawing balls from urns. I told you statisticians like to draw balls from urns! We
can also get, say, P (X ≤ 3), with the R command

phyper(q=3 , m = 12 , n = 20 - 12 , k = 5)

which gives P (X ≤ 3) = 0.6934985.
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Sampling without versus with replacement

The following exercise explores the difference between sampling with and without replace-
ment from a large population.

Exercise. Suppose we are interested in estimating the proportion of USC undergraduates
who are registered to vote. Let’s say there are 24,830 USC undergraduates, and suppose
that 9,932 of them are registered to vote (we don’t actually know the true number). Suppose
we sample the students sequentially and we let S1 be the event that the first student drawn
is registered to vote and let S2 be the event that the second student drawn is registered to
vote. Are the events S1 and S2 independent?

Answer: We have

P (S1) =
9,932

24,830
= 0.40.

We have also

P (S2|S1) =
9,931

24,829
and P (S2|Sc

1) =
9,932

24,829
.

We can already tell that S1 and S2 are not independent, because the probability of S2

changes depending on whether S1 has occurred or not. But let’s work toward checking for
independence using the test

P (S1 ∩ S2)
??
= P (S1)P (S2).

We can write:

P (S2 ∩ S1) = P (S2|S1)P (S1) =
9,931

24,829
× 9,932

24,830
= 0.1599903

P (S2 ∩ Sc
1) = P (S2|Sc

1)P (Sc
1) =

9,932

24,829
×
(

1− 9,932

24,830

)
= 0.2400097

Now since
P (S2) = P (S2 ∩ S1) + P (S2 ∩ Sc

1),

we have
P (S2) = 0.1599903 + 0.2400097 = 0.40.

So
P (S1)P (S2) = 0.40× 0.40 = .16 and P (S1 ∩ S2) = 0.1599903.

The answer is that S1 and S2 are almost independent.

Imagine a sampling scheme in which we draw a student, write down whether they are regis-
tered to vote or not, and then place them back in the population. We repeat this n times.
This is called sampling with replacement. Under sampling with replacement, each draw can
be regarded as a Bernoulli trial, and all the draws/trials are independent. Under sampling
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without replacement, which is what we actually do in practice, each draw can still be regarded
as a Bernoulli trial, but our entire sample represents a sequence of dependent Bernoulli tri-
als. However, if the population has a large number of successes and failures in it, the draws
under sampling without replacement can be regarded as independent Bernoulli trials, even
though this is not truly the case.

Example. Sample 6 USC undergraduates without replacement and let X be the number
of students in the sample who are registered to vote. If in fact 9,932 of the 24,830 USC
undergraduates are registered to vote, then X follows a hypergeometric distribution with
N = 24,830, M = 9,932, and K = 6, giving

x 0 1 2 3 4 5 6
P (X = x) 0.0466 0.1866 0.3111 0.2765 0.1382 0.0368 0.0041
P (X ≤ x) 0.0466 0.2332 0.5443 0.8208 0.9591 0.9959 1.0000

,

which can be obtained using the R commands

round(dhyper(x=0:6, m = 9932, n = 24830 - 9932, k = 6),4)

and
round(phyper(q=0:6, m = 9932, n = 24830 - 9932, k = 6),4)

Now sample 6 USC undergraduates with replacement and let X be the number of students in
the sample who are registered to vote. If in fact 9,932 of the 24,830 USC undergraduates are
registered to vote, then X follows a binomial distribution with n = 6 and p = 0.40, giving

x 0 1 2 3 4 5 6
P (X = x) 0.0467 0.1866 0.3110 0.2765 0.1382 0.0369 0.0041
P (X ≤ x) 0.0467 0.2333 0.5443 0.8208 0.9590 0.9959 1.0000

,

which can be obtained using the R commands

round(dbinom(x=0:6,size=6,prob=.40),4)

and
round(pbinom(q=0:6,size=6,prob=.40),4)

We see that the numbers are almost exactly the same.

Treating draws without replacement as independent Bernoulli trials

When the population contains a large number of successes and failures, we can regard draws
taken without replacement as independent Bernoulli trials, even though they are not in fact
independent: We get away with this because they are very close to being independent.
Therefore, we will use the binomial distribution much much more than the hypergeometric
distribution in this class.
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Probability mass functions of discrete random variables

In these notes we have considered the Bernoulli, Binomial, and Hypergeometric distributions.
For each of these distributions, a different function was used to compute the probabilities
P (X = x) for x in X . We refer to such functions in general as probability mass functions:

Definition: Probability mass function

The probability mass function (pmf) of a discrete random variable X with support X is
the function p which satisfies

P (X = x) = p(x) for all x ∈ X .

Example. If X ∼ Binomial(n, p), then the probability mass function of X is

p(x) =

(
n

x

)
px(1− p)n−x

for x in X .
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