
STAT 515 fa 2023 Lec 8

The Poisson and Exponential Distributions

Karl Gregory

The Poisson distribution

Suppose X is the number of occurrences per unit of time or space of an event, where the
occurrences

1. are independent

2. occur randomly but at a constant rate over the entire time/space.

We often treat the mechanism which generates the counts X over a span of time or region
in space under a mathematical model called a Poisson process. We have in mind random
variables like those in the following examples:

Example. Let X be the number of customers entering a store in an hour.

Example. Let X be the number of earthquakes per decade in a region.

Example. Let X be the number of weeds growing per square meter of a field.

Example. Let X be the number of bird nests per acre in a habitat.

For such random variables as in these examples, which are counts that could take the values
0, 1, 2, . . . , we often posit a probability distribution called the Poisson distribution, which
was first suggested by the subject of the portrait in Figure 1: Siméon Denis Poisson.

Definition: Poisson distribution

The Poisson distribution with mean λ is the probability distribution with probability mass
function given by

p(x) =
e−λλx

x!
,

where λ > 0. If X is a random variable with this distribution, we write X ∼ Poisson(λ).
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Figure 1: Siméon Denis Poisson (1781 - 1840)

Result: Mean and variance of the Poisson distribution

If X ∼ Poisson(λ), then
EX = λ and VarX = λ.

The values of the probability mass function of the Poisson(λ) distribution are plotted below
for λ taking the values 1, 4, and 7 in the first plot and the values 10, 20, and 30. in the
second plot. Note that the distributions are “centered” at these λ values in the sense that if
they were sitting on a see-saw with a fulcrum positioned at λ, the see-saw would not tip in
either direction.
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Exercise. Suppose the number of car accidents on any given day in a mid-sized city follows
a Poisson distribution with a mean of 20 accidents per day.

1. Find the probability that there are exactly 10 accidents on a given day.
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Answer: Letting X be the number of accidents on a given day, we have X ∼
Poisson(λ) with λ = 20. So the probability that there are exactly 10 accidents on
a given day is

P (X = 10) =
(20)10e−20

10!
= dpois(x = 10,lambda = 20) = 0.005816307.

2. Find the probability that there are 12 or more accidents on a given day.

Answer: We have

P (X ≥ 12) = 1 − P (X ≤ 11)

= 1 − [P (X = 0) + P (X = 1) + · · · + P (X = 11)]

= 1 −
11∑
x=0

(20)xe−20

x!

= 1 - ppois(q=11,lambda=20)

= 0.9786132.

Keeping in mind that our random variable X represents a count per unit time or space, we
may suppose that if we make our counts over larger units of time or space, the counts will
tend to be greater. A hallmark of Poisson processes is that the distribution of the counts
within a unit of time or space scales with the size of the unit. That is, we have the following:

Result: Scaling the Poisson time/space interval

Suppose X ∼ Poisson(λ) comes from a Poisson process such that X is the number of
occurrences per unit of time or space of an event. Then if Y is the number of occurrences
of the event per t units of time or space, we have Y ∼ Poisson(tλ).

Exercise. Suppose the number of car accidents on any given day in a mid-sized city follows
a Poisson distribution with a mean of 20 accidents per day. What is the probability that
there are no more than 130 car accidents in a given week?

Answer: Let X ∼ Poisson(λ), with λ = 20, be the number of car accidents on a given day
and let Y be the number of car accidents in a given week. Then Y ∼ Poisson(140), since
7(20) = 140. We have

P (Y ≤ 130) = P (Y = 0) + P (Y = 1) + · · · + P (Y = 130)

=
130∑
y=0

(140)ye−140

y!

= ppois(q=130,lambda=140)

= 0.2124409.
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The Exponential distribution

Suppose X comes from a Poisson process where the expected number of occurrences per
unit of time or space is λ. Let Y be the time between any two occurrences of the event or
the time until the first occurrence. How might we get the probability density function of the
random variable Y ? Begin by writing, for some time y into the future.

P (Y > y) = P (“no occurrences before time y”).

Now,

• In 1 unit of time or space, we “expect” λ occurrences.

• In y units of time or space, we “expect” yλ occurrences.

Here “expect” is in the sense of expected value. Following this logic, we can see that the
number of occurrences in y units of time or space follows a Poisson distribution with mean
yλ. Thus we may write

P (Y > y) = P (“no occurrences before time y”) =
(yλ)0e−yλ

0!
= e−yλ.

From this we get

P (Y ≤ y) = P (“first occurrence is before time y”) = 1 − P (Y > y) = 1 − e−yλ.

Recalling the definition of the cumulative distribution function (cdf), we see that we have
derived the cdf F of the random variable Y as

F (y) = 1 − e−yλ. (1)

By its definition, the probability density function f of the random variable Y must satisfy

F (y) =

∫ y

−∞
f(t)dt for all y.

Using calculus, we find that f must be the function

f(y) = λe−yλ,

which we find by taking the derivative of F (y) with respect to y:

d

dy
F (y) =

d

dy
[1 − e−yλ] = −e−yλ(−λ) = λe−yλ.

The pdf of Y has a shape like the curve below:
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For any a the the probability P (Y ≤ a) is given by F (a), which is the area under the pdf to
the left of a, as depicted below.

f(y)

λ

0 a y

Definition: Exponential distribution

The continuous probability distribution with pdf given by

f(y) = λe−yλ

is called the exponential distribution with mean 1/λ. If a random variable Y has this
distribution, we write Y ∼ Exponential(λ).

If Y ∼ Exponential(λ) then

EY =
1

λ
and Var(Y ) =

1

λ2
.

Exercise. Suppose the occurrence of blown-out tires lying along the freeway can be regarded
as a Poisson process such that for every mile, the expected number of blown-out tires is 1/3.
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1. Let X be the number of tires we see in the next mile.

(a) Find P (X = 2).

Answer: We have X ∼ Poisson(1/3), so

P (X = 2) =
(1/3)2e−(1/3)

2!
= dpois(2,1/3) = 0.0398.

(b) Find P (X ≥ 1).

Answer: We have

P (X ≥ 1) = 1 − P (X = 0) = 1 − (1/3)0e−(1/3)

0!
= 1 - dpois(0,1/3) = 0.283.

2. Let W be the number of tires we see in the next 12 miles.

(a) Find P (W = 2).

Answer: We have W ∼ Poisson(4), so

P (W = 2) =
42e−4

2!
= 0.1465.

(b) Find P (W ≥ 1).

Answer: We have

P (W ≥ 1) = 1 − P (W = 0) = 1 − 40e−4

0!
= 1 − e−4 = 0.982.

3. Let Y be the distance traveled before the first blown-out tire is seen.

(a) What is the distribution of Y ?

Answer: Since the occurrences of blown-out tires lying on the freeway is a Pois-
son process such that the expected number of blown-out tires in any one-mile
segment is 1/3, the distances between blown-out tires would follow an exponen-
tial distribution with mean 3. That is Y ∼ Exponential(1/3).

(b) Find P (Y = 5).

Answer: Since Y is a continuous random variable, P (Y = 5) = 0.
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(c) Find P (Y ≤ 5).

Answer: We can use the cdf of the Exponential(1/3) distribution from equation
(1). we have

P (Y ≤ 5) = 1 − e−(1/3)(5) = pexp(5,1/3) = 0.811.

(d) Find P (Y > 10).

Answer: We can again use the cdf of the Exponential(1/3) distribution.

P (Y > 10) = 1 − P (Y ≤ 10) = 1 − [1 − e−(1/3)(10)] = 1-pexp(10,1/3) = 0.036.
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