STAT 515 fa 2023 Lec 8

The Poisson and Exponential Distributions

Karl Gregory

The Poisson distribution

Suppose X is the number of occurrences per unit of time or space of an event, where the occurrences

- 1. are independent
- 2. occur randomly but at a constant rate over the entire time/space.

We often treat the mechanism which generates the counts X over a span of time or region in space under a mathematical model called a Poisson process. We have in mind random variables like those in the following examples:

Example. Let X be the number of customers entering a store in an hour.

Example. Let X be the number of earthquakes per decade in a region.

Example. Let X be the number of weeds growing per square meter of a field.

Example. Let X be the number of bird nests per acre in a habitat.

For such random variables as in these examples, which are counts that could take the values $0, 1, 2, \ldots$, we often posit a probability distribution called the Poisson distribution, which was first suggested by the subject of the portrait in Figure [1:](#page-1-0) Simeon Denis Poisson.

Definition: Poisson distribution

The Poisson distribution with mean λ is the probability distribution with probability mass function given by

$$
p(x) = \frac{e^{-\lambda}\lambda^x}{x!},
$$

where $\lambda > 0$. If X is a random variable with this distribution, we write $X \sim \text{Poisson}(\lambda)$.

Figure 1: Siméon Denis Poisson (1781 - 1840)

Result: Mean and variance of the Poisson distribution
\nIf
$$
X \sim \text{Poisson}(\lambda)
$$
, then
\n
$$
\mathbb{E}X = \lambda \quad \text{and} \quad \text{Var } X = \lambda.
$$

The values of the probability mass function of the $Poisson(\lambda)$ distribution are plotted below for λ taking the values 1, 4, and 7 in the first plot and the values 10, 20, and 30. in the second plot. Note that the distributions are "centered" at these λ values in the sense that if they were sitting on a see-saw with a fulcrum positioned at λ , the see-saw would not tip in either direction.

Exercise. Suppose the number of car accidents on any given day in a mid-sized city follows a Poisson distribution with a mean of 20 accidents per day.

1. Find the probability that there are exactly 10 accidents on a given day.

Answer: Letting X be the number of accidents on a given day, we have $X \sim$ Poisson(λ) with $\lambda = 20$. So the probability that there are exactly 10 accidents on a given day is

$$
P(X = 10) = \frac{(20)^{10}e^{-20}}{10!} = \text{dpois}(x = 10, \text{lambda} = 20) = 0.005816307.
$$

2. Find the probability that there are 12 or more accidents on a given day. Answer: We have

$$
P(X \ge 12) = 1 - P(X \le 11)
$$

= 1 - [P(X = 0) + P(X = 1) + \dots + P(X = 11)]
= 1 - \sum_{x=0}^{11} \frac{(20)^x e^{-20}}{x!}
= 1 - \text{ppois}(q=11,1\text{ambda}=20)
= 0.9786132.

Keeping in mind that our random variable X represents a count per unit time or space, we may suppose that if we make our counts over larger units of time or space, the counts will tend to be greater. A hallmark of Poisson processes is that the distribution of the counts within a unit of time or space scales with the size of the unit. That is, we have the following:

Result: Scaling the Poisson time/space interval

Suppose $X \sim \text{Poisson}(\lambda)$ comes from a Poisson process such that X is the number of occurrences per unit of time or space of an event. Then if Y is the number of occurrences of the event per t units of time or space, we have $Y \sim \text{Poisson}(t\lambda)$.

Exercise. Suppose the number of car accidents on any given day in a mid-sized city follows a Poisson distribution with a mean of 20 accidents per day. What is the probability that there are no more than 130 car accidents in a given week?

Answer: Let $X \sim \text{Poisson}(\lambda)$, with $\lambda = 20$, be the number of car accidents on a given day and let Y be the number of car accidents in a given week. Then $Y \sim \text{Poisson}(140)$, since $7(20) = 140$. We have

$$
P(Y \le 130) = P(Y = 0) + P(Y = 1) + \dots + P(Y = 130)
$$

=
$$
\sum_{y=0}^{130} \frac{(140)^y e^{-140}}{y!}
$$

=
$$
\text{ppois}(q=130, \text{lambda=140})
$$

= 0.2124409.

The Exponential distribution

Suppose X comes from a Poisson process where the expected number of occurrences per unit of time or space is λ . Let Y be the time between any two occurrences of the event or the time until the first occurrence. How might we get the probability density function of the random variable Y ? Begin by writing, for some time y into the future.

$$
P(Y > y) = P("no occurrences before time y").
$$

Now,

- In 1 unit of time or space, we "expect" λ occurrences.
- In y units of time or space, we "expect" $y\lambda$ occurrences.

Here "expect" is in the sense of expected value. Following this logic, we can see that the number of occurrences in y units of time or space follows a Poisson distribution with mean $y\lambda$. Thus we may write

$$
P(Y > y) = P("no occurrences before time y") = \frac{(y\lambda)^0 e^{-y\lambda}}{0!} = e^{-y\lambda}.
$$

From this we get

$$
P(Y \le y) = P("first occurrence is before time y") = 1 - P(Y > y) = 1 - e^{-y\lambda}.
$$

Recalling the definition of the cumulative distribution function (cdf), we see that we have derived the cdf F of the random variable Y as

$$
F(y) = 1 - e^{-y\lambda}.\tag{1}
$$

By its definition, the probability density function f of the random variable Y must satisfy

$$
F(y) = \int_{-\infty}^{y} f(t)dt \quad \text{ for all } y.
$$

Using calculus, we find that f must be the function

$$
f(y) = \lambda e^{-y\lambda},
$$

which we find by taking the derivative of $F(y)$ with respect to y:

$$
\frac{d}{dy}F(y) = \frac{d}{dy}[1 - e^{-y\lambda}] = -e^{-y\lambda}(-\lambda) = \lambda e^{-y\lambda}.
$$

The pdf of Y has a shape like the curve below:

For any a the the probability $P(Y \le a)$ is given by $F(a)$, which is the area under the pdf to the left of a, as depicted below.

Definition: Exponential distribution

The continuous probability distribution with pdf given by

$$
f(y) = \lambda e^{-y\lambda}
$$

is called the exponential distribution with mean $1/\lambda$. If a random variable Y has this distribution, we write $Y \sim$ Exponential(λ).

If $Y \sim \text{Exponential}(\lambda)$ then

$$
\mathbb{E}Y = \frac{1}{\lambda} \quad \text{and} \quad \text{Var}(Y) = \frac{1}{\lambda^2}.
$$

Exercise. Suppose the occurrence of blown-out tires lying along the freeway can be regarded as a Poisson process such that for every mile, the expected number of blown-out tires is 1/3.

- 1. Let X be the number of tires we see in the next mile.
	- (a) Find $P(X = 2)$.

Answer: We have $X \sim \text{Poisson}(1/3)$, so

$$
P(X=2) = \frac{(1/3)^2 e^{-(1/3)}}{2!} = \text{dpois}(2, 1/3) = 0.0398.
$$

(b) Find $P(X \geq 1)$.

Answer: We have

$$
P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{(1/3)^0 e^{-(1/3)}}{0!} = 1 - \text{ dpois}(0, 1/3) = 0.283.
$$

- 2. Let W be the number of tires we see in the next 12 miles.
	- (a) Find $P(W = 2)$.

Answer: We have $W \sim \text{Poisson}(4)$, so

$$
P(W = 2) = \frac{4^2 e^{-4}}{2!} = 0.1465.
$$

(b) Find $P(W \ge 1)$.

Answer: We have

$$
P(W \ge 1) = 1 - P(W = 0) = 1 - \frac{4^0 e^{-4}}{0!} = 1 - e^{-4} = 0.982.
$$

- 3. Let Y be the distance traveled before the first blown-out tire is seen.
	- (a) What is the distribution of Y ?

Answer: Since the occurrences of blown-out tires lying on the freeway is a Poisson process such that the expected number of blown-out tires in any one-mile segment is 1/3, the distances between blown-out tires would follow an exponential distribution with mean 3. That is $Y \sim$ Exponential(1/3).

(b) Find $P(Y=5)$.

Answer: Since Y is a continuous random variable, $P(Y = 5) = 0$.

(c) Find $P(Y \le 5)$.

Answer: We can use the cdf of the Exponential $(1/3)$ distribution from equation (1) . we have

$$
P(Y \le 5) = 1 - e^{-(1/3)(5)} = \text{pexp}(5, 1/3) = 0.811.
$$

(d) Find $P(Y > 10)$.

Answer: We can again use the cdf of the Exponential $(1/3)$ distribution.

$$
P(Y > 10) = 1 - P(Y \le 10) = 1 - [1 - e^{-(1/3)(10)}] = 1 - \text{pexp}(10, 1/3) = 0.036.
$$