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Sampling distributions and the central limit theorem

Karl Gregory

Sampling distributions

Remember that much of statistics has to do with learning about a population from a random
sample. Here we consider the use of sample statistics as estimators of population parameters.
Recall that sample statistics are values computed from a random sample and that population
parameters are values belonging to the population which we cannot know unless we take a
census.

We will focus on two situations in parallel:

1. Each draw from the population is a real number which we represent with the random
variable X, and we are interested in the population parameters

µ = EX and σ2 = Var(X),

which we call the population mean and the population variance, respectively.

2. Each draw from the population is a “success” or a “failure” which we encode in the
random variable X as

X =

{
1 if “success”
0 if “failure”,

and we are interested in the population parameter

p = P (X = 1),

which we call the population proportion.

Case 1: Drawing real numbers

Consider drawing a random sample of size n from the population and let the n real numbers
be represented by the random variables

X1, . . . , Xn.
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Now define the sample quantities

X̄n =
1

n

n∑
i=1

Xi and S2
n =

1

n− 1

n∑
i=1

(Xi − X̄)2,

which we call the sample mean and the sample variance, respectively.

The sample statistics X̄ and s2 are estimators of the population parameters µ and σ2; that
is, X̄ and s2 are guesses, from the data in the random sample, of the unknown values of µ
and σ2 (We will find that they are good guesses).

 

Case 2: Drawing successes and failures

Consider drawing a random sample of size n from the population and let the n “successes”
and “failures” in the sample be encoded as ones and zeroes in the random variables

X1, . . . , Xn

such that

Xi =

{
1 if draw i is a “success”
0 if draw i is a “failure”

for i = 1, . . . , n.

Now define the sample quantity

p̂ =
1

n

n∑
i=1

Xi =
#{successes}

n
,

which we call the sample proportion.
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The sample statistic p̂ is an estimator of the population parameter p; that is, p̂ is a guess,
from the data in the random sample, of the unknown value of p (We will find that it is a
good guess).

Note that if another random sample were drawn, it is likely that a different value of p̂ would
be obtained.

 

Learning about the population from the random sample

Given that the values of X̄ and s2 or p̂ change from sample-to-sample, how useful can they
be to inform us about their population counterparts µ and σ2 or p? To answer this question
we must do some thought experiments: We must ask ourselves what values of X̄ and s2 or p̂
we would get if we took a very large number of random samples—that is, if we repeated our
random sampling over and over again. How often would certain values of X̄ and s2 or p̂ occur
or how often would they fall within certain ranges? Would they be close to their population
counterparts, and if so, how close can we expect them to be? If we made histograms of
their values over many repeated samples, what would those histograms look like? Put in a
technical way, what probability distributions would these quantities have if we were to repeat
our sampling many many times? These distributions, whatever they may look like, are called
sampling distributions, as they reflect how sample statistics vary from sample to sample.
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One goal of considering these sampling distributions is to be able to make statements like

1. “We are pretty sure† µ is something like X̄ plus or minus something‡.”

2. “We are pretty sure† p is something like p̂ plus or minus something‡.”

†: Studying the sampling distribution lets us make “pretty sure” more precise.
‡: Studying the sampling distribution enables us to find an appropriate “something”, which
we will later call a margin of error.

Sampling distribution of the mean

To understand what the sample mean X̄ can tell us about the population mean µ, we must
understand how X̄ behaves from sample to sample. Its behavior is described by its sampling
distribution.

4



What we must imagine is repeating our statistical experiment many times—drawing many
random samples of size n and computing the mean of each one. If we were to build a
histogram of these sample means, what would it look like?

Expected value and variance of the sample mean

Two things are always true of the sample mean:

Sampling distribution result: Mean and variance of the sample mean

Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2 and
let X̄ = (X1 + · · ·+Xn)/n. Then

EX̄ = µ and Var X̄ =
σ2

n
.

What will happen as we take a larger and larger sample size? The variance of the sample
mean will become very small. This tells us that if we take very large samples, our sample
means will not change very much from sample to sample. In other words, we expect the
sample mean from a larger sample to be closer to the population mean µ than the sample
mean from a smaller sample.

The mean of a sample from a Normal population

First suppose that we draw our sample of size n from a population of values which follow a
Normal distribution with mean µ and variance σ2.

Sampling distribution result: Mean of random sample from a Normal population

Let X1, . . . , Xn be a random sample from a population which has the Normal distribution
with mean µ and variance σ2 and let X̄ = (X1 + · · ·+Xn)/n. Then

X̄ ∼ Normal

(
µ,
σ2

n

)
.

How might we use this result? If X̄ has the Normal distribution with mean µ and variance
σ2/n, we may find P (a ≤ X ≤ b) as follows:

1. Transform a and b from the X̄ world to the Z world (the number-of-standard-deviations
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world) by

a 7→ a− µ
σ/
√
n

and b 7→ b− µ
σ/
√
n
,

since

P
(
a ≤ X̄ ≤ b

)
= P

(
a− µ
σ/
√
n
≤ X̄ − µ
σ/
√
n
≤ b− µ
σ/
√
n

)
= P

(
a− µ
σ/
√
n
≤ Z ≤ b− µ

σ/
√
n

)
.

Note that if a = ±∞ then (a−µ)/(σ/
√
n) = ±∞ and if b = ±∞ then (b−µ)/(σ/

√
n) =

±∞.

2. Look up probabilities for Z on the z-table.

Exercise. Let X be the number of minutes of cell-phone talk time in the last month of
a randomly selected USC undergraduate. Suppose that the cell phone talk times of USC
undergraduates are Normally distributed with mean µ = 300 and variance σ2 = 502.

1. Find P (|X − 300| > 50).

Answer: First, let’s figure out what |X − 300| > 50 means: it means that X is more
than 50 away from the mean 300, so we want P (X < 250 or X > 350). For the values
250 and 350 we compute Z, the number of standard deviations from the mean:

Z =
X − µ
σ

gives
250− 300

50
= −1 and

350− 300

50
= 1.

We get from the Z table that P (Z < −1) = (Z > 1) = 0.1587, so the answer is
2(0.1587) = 0.3174.

2. Suppose you sampled 4 USC undergraduates and took the average of their cell phone
talk times. Let the average of the four talk times be X̄. What is P (|X̄ − 300| > 50)?

Answer: Like before, we interpret this as P (X̄ < 250 or X̄ > 350). We again compute
the number of standard deviations of 250 and 350 from the mean, but this time the
standard deviation of our random variable is σ/

√
n. The variance of X̄ is σ2/n, so our

Z is going to be different:

Z =
X̄ − µ
σ/
√
n

gives
250− 300

50/2
= −2 and

350− 300

50/2
= 2.

We get from the Z table that P (Z < −2) = P (Z > 2) = 0.0228, so the answer is
2(0.0228) = 0.0456.

6



3. Sample 9 USC undergraduates and let X̄ be the mean of their cell phone talk times.
What is P (|X̄ − 300| > 50)?

Answer: With a sample size of n = 9, the standard deviation of the mean X̄ is
smaller—its variability around the true mean decreases as the sample size grows. Now

Z =
X̄ − µ
σ/
√
n

gives
250− 300

50/3
= −3 and

350− 300

50/3
= 3.

We get from the Z table that P (Z < −3) = P (Z > 3) = 0.0013, so the answer is
2(0.0013) = 0.0026.

What is happening to the distribution of X̄ as the sample size increases? It is getting
narrower, concentrating around the mean. For larger samples, the chances are smaller that
we will get a value of X̄ which is far from the mean.

The most important theorem in statistics

Probably the most important theorem in statistics is the central limit theorem. This theorem
tells us that the sample mean behaves like a Normal random variable if the sample size is
large enough—even if the population itself is not Normal!

Sampling distribution result: Central limit theorem

Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2 <∞
and let X̄ = (X1 + · · ·+Xn)/n. Then

X̄ − µ
σ/
√
n

has a distribution more and more like the Normal(0, 1)

distribution for larger and larger sample sizes n.

Remark 1. How large should the sample size n be before we can invoke the central limit
theorem? A rule of thumb is that we can safely treat (X̄ − µ)/(σ/

√
n) like a Normal(0, 1)

random variable if n ≥ 30.

Exercise. Let X be the marathon time of a randomly selected runner of the next Columbia
marathon. The distribution is skewed to the right and has mean 4.5 hours and standard de-
viation 2 hours. Suppose you take a random sample of 30 finishers. What is the probability
that the mean of the finishing times of the 30 runners is less than 4.25 hours?

Answer: Even though the marathon times are not Normally distributed, the Z-score (X̄ −
µ)/(σ/

√
n) of the sample mean should behave like a Normal(0, 1) random variable. Thus we
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can get P (X̄ < 4.25) using the Normal distribution:

Z =
4.25− 4.5√

4/30
= −0.68,

and P (Z < −0.68) = 0.2483. So the answer is

P (X̄ < 4.25) = 0.2483.

Example. Let X be the number of ships which come through a set of locks in an afternoon,
and the mean and standard deviation of X are 6 and 1, respectively. Suppose you observe
the locks on five randomly selected afternoons and compute X̄, the mean of the numbers of
ships you counted on the 5 afternoons. What is P (X̄ > 7)?

Answer: We cannot compute it, because the sample size n is small (5 < 30), and the central
limit theorem holds only for large sample sizes.

More ways to describe probability distributions

The Normal distribution has a bell-shaped probability density function. We often describe
distributions by the way their probability density functions differ in shape from that of the
Normal distribution: A left-skewed distribution produces more observations to the far left of
the mean than the Normal distribution, a heavy-tailed distribution produces more extreme
values far away from the mean in both directions, a right-skewed distribution produces more
observations to the far right of the mean than the Normal distribution.

The plots below show probability density functions for a left-skewed, heavy-tailed, and a
right-skewed distribution (solid lines) with the Normal probability density function (dashed
line) overlaid. Below these plots are histograms from a sample of size n = 500 drawn from
the respective distributions. In the bottom row of the figure, Normal QQ plots are given
comparing the quantiles of the sample to the quantiles of the Normal distribution.
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The central limit theorem says that even when the population has a distribution which is
left-skewed, heavy-tailed, right-skewed, or even which differs from the Normal distribution
in some other way, the mean of a large enough sample may be treated as a Normal random
variable. This is taken advantage of all the time in statistical practice.

Sampling distribution of the sample proportion

We can get the expected value and variance of the sample proportion by expressing it as a
mean of random variables which are equal to zero or one. Moreover, since can express the
sample proportion p̂ as a mean we can use the central limit theorem to treat it as a random
variable having a Normal distribution when the sample size is large.
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Expected value and variance of the sample proportion

Suppose, as before, that we encode the outcome of a Bernoulli trial in the random variable
X such that

X =

{
1 if outcome a “success”
0 if outcome a “failure”.

If the Bernoulli trial has success probability p, then we have P (X = 1) = p and P (X = 0) =
1− p. We can compute

EX = p and Var(X) = p(1− p).

Suppose we ran the Bernoulli trial n times independently and got X1, . . . , Xn. Then the
sample proportion p̂ of successes can be defined as

p̂ =
1

n

n∑
i=1

Xi =
#{successes}

n
.

Given that p̂ is simply the sample mean of the Bernoulli random variables X1, . . . , Xn, its
expected value is p and its variance is p(1− p)/n. We express this in the following result:

Sampling distribution result: Mean and variance of a sample proportion

Let X1, . . . , Xn be independent random variables equal to 1 with probability p and equal
to 0 with probability 1− p and let p̂ = (X1 + · · ·+Xn)/n. Then

Ep̂ = p and Var(p̂) =
p(1− p)

n
.

Central limit theorem for the sample proportion

Additionally, we can apply the central limit theorem to p̂ which lets us treat p̂ like a Normally
distributed random variable when the sample size n is large enough.

Sampling distribution result: Central limit theorem for sample proportion

Let X1, . . . , Xn be independent random variables equal to 1 with probability p and equal
to 0 with probability 1− p and let p̂ = (X1 + · · ·+Xn)/n. Then

p̂− p√
p(1−p)
n

has a distribution more and more like the Normal(0, 1)

distribution for larger and larger sample sizes n.
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This result tells us that if n is large, we have

p̂
approx∼ Normal

(
p,
p(1− p)

n

)
,

so we can compute approximations to probabilities of the form P (a ≤ p̂ ≤ b) as follows:

1. Transform a and b from the p̂ world to the Z world (the number-of-standard-deviations
world) by

a 7→ a− p√
p(1− p)/n

and b 7→ b− p√
p(1− p)/n

,

since

P (a ≤ p̂ ≤ b) = P

(
a− p√

p(1− p)/n
≤ p̂− p√

p(1− p)/n
≤ b− p√

p(1− p)/n

)

= P

(
a− p√

p(1− p)/n
≤ Z ≤ b− p√

p(1− p)/n

)
.

Note that if a = ±∞ then a−p√
p(1−p)/n

= ±∞ and if b = ±∞ then b−p√
p(1−p)/n

= ±∞.

2. Look up probabilities for Z on the z-table.

Remark 2. How large should n be before we can invoke the central limit theorem for the
sample proportion p̂? A rule of thumb is that we can safely treat (p̂− p)/(

√
p(1− p)/n) as

a Normal(0, 1) random variable if

np ≥ 5 and n(1− p) ≥ 5.

Example. Suppose you take a random sample of 15 USC undergraduates and you ask each
one if they are registered to vote. Let p̂ be the proportion in your sample who are registered
to vote. Supposing that the true proportion of USC undergraduates who are registered to
vote is 0.6, What is the probability that p̂ of your sample is greater than 0.7?

Answer: For a sample of size n = 15 and with p = 0.6, we have

15(0.6) = 9 and 15(0.4) = 6,

so according to the rule of thumb, (p̂− p)/
√
p(1− p)/n should behave approximately like a

Normal(0, 1) random variable. Now

Z =
p̂− p√
p(1−p)
n

gives
0.7− 0.6√

0.6(1−0.6)
15

= 0.79.
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We get from the table that P (Z > 0.79) = 0.2148. So the answer is

P (p̂ > 0.7) ≈ 0.2148.

Another answer: We could also use the Binomial distribution to get the exact answer.
The event p̂ > 0.7 corresponds to observing 11 or more successes out of the 15 Bernoulli
trials. So if Y is the number of successes, P (p̂ > 0.7) = P (Y ≥ 11) = 1 − P (Y < 10). We
can compute P (X < 10) in R using the command

pbinom(q=10,size=15,prob=.6)

We get P (Y < 10) = 0.7827, so the answer is

P (p̂ > 0.7) = P (Y ≥ 11) = 1− 0.7827 = 0.2173.

It is close to the first answer, which came from using the central limit theorem.

Sampling distribution summaries for X̄ and p̂

The sampling distribution of the standardized sample mean

X̄ − µ
σ/
√
n

is summarized in this diagram:

X̄−µ
σ/
√
n
∼ Normal(0, 1)

X ∼ Normal(µ, σ 2)

X̄−µ
σ/
√
n

non-Normal

n < 30

X̄−µ
σ/
√
n

approx∼ Normal(0, 1)

n ≥ 30

X non
- No

rmal
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The sampling distribution of the standardized sample proportion

p̂− p√
p(1− p)/n

is summarized in this diagram:

p̂−p√
p(1−p)

n

approx∼ Normal(0, 1)

np̂n
approx∼ Normal(np, np(1− p))
np̂ ∼ Binomial(n, p)

min{np, n(1− p)} ≥ 5

np̂ ∼ Binomial(n, p)

min{np, n(
1− p)} <

5

Recall that np̂ = Y , the number of successes in n Bernoulli trials, so saying that np̂ ∼
Binomial(n, p) is nothing new, and it is always true, no matter what n is.

Further examples of the central limit theorem

Exercise. Suppose X is the time between phone calls to a customer service call center every
hour, and suppose it follows the exponential distribution with mean equal to 1/20. Suppose
we observe the next 30 time intervals between calls and let X̄ be the mean length of the 30
time intervals. What is P (X̄ > .075)?

Answer: For the Exponential(λ) distribution, we have µ = 1/λ and σ2 = 1/λ2. Accord-
ing to the central limit theorem, (X̄ − λ−1)/(λ−1/

√
n) should behave approximately like a

Normal(0, 1) random variable. So, with λ = 20, we get

Z =
X̄ − λ−1

λ−1/
√
n

=
0.075− 0.05√

0.0025/30
= 2.74,

and P (Z > 2.74) = 0.0031.

Exercise. Suppose X is the number of phone calls to a call center every hour, and suppose
it follows the Poisson distribution with λ = 20. Suppose we observe the call center during
25 randomly selected hours and let X̄ the mean number of calls per hour over the 25 hours.
What is P (X̄ < 18)?
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Answer: For the Poisson distribution, we have µ = λ and σ2 = λ. According to the central
limit theorem, (X̄ − λ)/(

√
λ/n) should behave approximately like a Normal(0, 1) random

variable. So, with λ = 20, we get

Z =
X̄ − λ√
λ/n

=
18− 20√

20/25
= −2.24,

and P (Z < −2.24) = 0.0125.
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