STAT 515 fa 2023 Lec 11

Variance estimation

Karl Gregory

Estimating σ^2 from the sample

Suppose X_1, \ldots, X_n are a random sample from the Normal (μ, σ^2) distribution, where μ and σ^2 are unknown. We consider estimating σ^2 and building a confidence interval for it.

Our estimator of σ^2 is the sample quantity

$$
S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.
$$

We know that S_n^2 will take a different value every time we draw a sample; if we were to repeat our experiment many times, we would get many different values of S_n^2 . Our question is what the distribution of these values would look like.

In building a confidence interval for the mean μ , we began with the assumption

$$
\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \text{Normal}(0, 1),
$$

which is satisfied if the population distribution is Normal or approximately satisfied if the sample size is large. This allowed us to write

$$
P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha,
$$

which we could rearrange to get

$$
P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.
$$

This gave us the $(1 - \alpha)100\%$ confidence interval for μ defined by

$$
\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.
$$

We will follow similar steps in order to construct a confidence interval for σ^2 based on S_n^2 .

Sampling distribution of S_n^2 n

We need to know the sampling distribution of S_n^2 , so that we can write a probability statement involving S_n^2 and the unknown σ^2 which we can rearrange to construct a confidence interval. We will use the following result on the sampling distribution of S_n^2 .

Sampling distribution result: Sampling distribution result for S_n^2 .

Let X_1,\ldots,X_n be a random sample from a Normal population with variance σ^2 and let $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2$. Then $(n-1)S_n^2$ $\frac{1}{\sigma^2}$ has the chi-squared distribution with degrees of freedom $n-1$.

If a random variable W has the chi-squared distribution with degrees of freedom ν , then we write $W \sim \chi^2_{\nu}$.

What does the chi-squared distribution look like? There is a chi-squared distribution for every positive whole number $\nu = 1, 2, 3, \ldots$, and the whole number with which a chi-squared distribution is associated is called its *degrees of freedom*. The chi-squared distributions are all right-skewed distributions. The probability density function of the χ^2_{ν} distribution is given by

$$
f(x) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{\nu/2 - 1} \exp\left(-\frac{x}{2}\right), \quad x > 0,
$$

where $\Gamma(z) = \int_0^\infty u^{z-1} e^{-z} dz$ for $z > 0$. The pdfs of the chi-squared distributions with degrees of freedom $\nu = 1, \ldots, 8$ are plotted here:

Confidence interval for σ^2

In order to give an expression for a $(1 - \alpha)100\%$ confidence interval for σ^2 , we define, for any number $0 < \xi < 1$, the quantity $\chi^2_{\nu,\xi}$ to be the value such that

$$
P(W > \chi^2_{\nu,\xi}) = \xi,
$$

where W is a random variable having the chi-squared distribution with degrees of freedom equal to ν . The value $\chi^2_{\nu,\xi}$ thus admits the depiction

Now we may write the probability statement

$$
P\left(\chi_{n-1,1-\alpha/2}^2 \le \frac{(n-1)S_n^2}{\sigma^2} \le \chi_{n-1,\alpha/2}^2\right) = 1 - \alpha,
$$

which corresponds to the picture

We can rearrange the previous probability statement to leave σ^2 in the middle:

$$
P\left(\frac{(n-1)S_n^2}{\chi_{n-1,\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S_n^2}{\chi_{n-1,1-\alpha/2}^2}\right) = 1 - \alpha.
$$

Thus, a $(1 - \alpha)100\%$ confidence interval for σ^2 is given by

$$
\left(\frac{(n-1)S_n^2}{\chi^2_{n-1,\alpha/2}}, \frac{(n-1)S_n^2}{\chi^2_{n-1,1-\alpha/2}}\right).
$$

Note that the interval is not "symmetric" around the estimator S_n^2 , that is, it is not of the form $S_n^2 \pm$ something. This is because the sampling distribution of S_n^2 is not symmetric.

Loblolly pine trees example

Exercise. Using the data set Loblolly in R, which one can access by entering data(Loblolly) into the console, build a 95% confidence interval for the variance σ^2 of the height of Loblolly pines which are ten years old.

Answer: Execute the command

x <- Loblolly\$height[Loblolly\$age==10]

in R. This stores the desired values in the vector x. We can compute S_n^2 by typing $var(x)$, which gives $S_n^2 = 2.365095$.

To make sure the data are Normally distributed (which is necessary in order to construct a confidence interval based on a chi-squared distribution), we make a Normal QQ plot with the commands $qqnorm(scale(x))$ and $abline(0,1)$. This produces the plot

Normal Q-Q Plot

The points in the plot deviate somewhat from a straight line, but it seems pretty safe to assume that the data have come from a Normal distribution.

The sample size is $n = 14$, which we can get by entering length(x) into the console. The relevant chi-squared distribution is thus the chi-squared distribution with degrees of freedom equal to $14 - 1 = 13$. We can retrieve quantiles of the chi-squared distributions using the qchisq() function in R or by consulting the tables on pages 818 and 819 of the textbook. We find

$$
\chi^2_{13,975} = \text{qchisq}(.025, 13) = 5.00874 \quad \text{ and } \quad \chi^2_{13,025} = \text{qchisq}(.975, 13) = 24.7356.
$$

A 95% confidence interval for σ^2 is thus given by

$$
\left(\frac{(14-1)2.365095}{24.7356}, \frac{(14-1)2.365095}{5.00874}\right) = (1.242995, 6.138517).
$$

Where do the chi-squared distributions come from?

Let Z_1, \ldots, Z_n be a random sample from the $Z \sim \text{Normal}(0, 1)$ distribution. If we define

$$
W_n = Z_1^2 + Z_2^2 + \dots + Z_n^2,
$$

we find that $W_n \sim \chi_n^2$. We can write

$$
\frac{(n-1)S_n^2}{\sigma^2} = \frac{n-1}{n-1} \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\sigma^2} \n= \left(\frac{X_1 - \bar{X}}{\sigma}\right)^2 + \left(\frac{X_2 - \bar{X}}{\sigma}\right)^2 + \dots + \left(\frac{X_n - \bar{X}}{\sigma}\right)^2,
$$

which looks a lot like a sum of Z values, just with μ replaced by \overline{X} . A theorem called Cochran's theorem can be used to conclude that the effect of having \overline{X} instead of μ is a reduction in the degrees of freedom by 1. So

$$
\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2_{n-1}.
$$