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Confidence interval for the mean when variance unknown

Karl Gregory

Confidence interval for µ with σ unknown

Until now, we have constructed confidence intervals for the mean µ assuming that the vari-
ance σ2 of the population is known. In practice, we will know neither µ nor σ2. We must
estimate µ and σ2 from the data.

Recall that if X1, . . . , Xn are a random sample of X values such that we may assume X̄n has
the Normal(µ, σ2/n) distribution, then we may write the probability statement

P

(
−zα/2 ≤

X̄n − µ
σ/
√
n
≤ zα/2

)
= 1− α,

which we can rearrange to get

P

(
X̄n − zα/2

σ√
n
≤ µ ≤ X̄n + zα/2

σ√
n

)
= 1− α,

which implies that a (1− α)100% confidence interval for µ may be constructed as

X̄n ± zα/2
σ√
n
.

Our best guess of σ from the data is the square root of the sample quantity

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2.

We find, however, that if we replace σ with s, then we must replace zα/2 by a larger quantity;
that is, we must make the confidence interval wider to compensate for using an estimate of
σ rather than the true value of σ.
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Figure 1: William Sealy Gosset (1876 – 1937)

Construction of the t-distribution

In order to construct a confidence interval for µ when σ is estimated by Sn, we first note
that the quantity

X̄n − µ
Sn/
√
n

does not have a Normal distribution. This quantity has a distribution called a t-distribution,
which was first considered by the fellow in Figure 1.

Sampling distribution result: t-distribution result

Let X1, . . . , Xn
ind∼ Normal(µ, σ2) and let

X̄n = n−1
n∑
i=1

Xi and S2
n = (n− 1)−1

n∑
i=1

(Xi − X̄n)2.

Then

X̄n − µ
Sn/
√
n

has the t-distribution with degrees of freedom equal to n− 1.

If a random variable T has the t-distribution with degrees of freedom ν, we write T ∼ tν .

A t-distribution arises when a standard Normal random variable Z is divided by the square
root of chi-squared random variable W divided by its degrees of freedom, where Z and W
are independent from each other. That is, if Z and W are independent random variables
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such that Z ∼ Normal(0, 1) and W ∼ χ2
ν , the quantity

T =
Z√
W/ν

has what is called the t-distribution with ν degrees of freedom. So a t-distribution inherits
its degrees of freedom from the chi-squared random variable in its construction.

Now, we may write

X̄n − µ
Sn/
√
n

=
X̄n − µ
σ/
√
n

1

(Sn/σ)
=

(
X̄n − µ
σ/
√
n

)
1√
S2
n/σ

2
=

(
X̄n − µ
σ/
√
n

)
1√

(n−1)S2
n

(n−1)σ2

.

We know that when the population is Normally distributed,

X̄n − µ
σ/
√
n
∼ Normal(0, 1) and

(n− 1)S2
n

σ2
∼ χ2

n−1.

We also know (from a theorem called Cochran’s Theorem) that these quantities are inde-
pendent from each other when the population is Normal. We may therefore claim that

X̄n − µ
Sn/
√
n

has the same distribution as
Z√

W/(n− 1)
,

where Z and W are independent random variables such that Z has the Normal(0, 1) distri-
bution and W has the chi-squared distribution with degrees of freedom n− 1.

Properties of the t-distributions

There is a different t-distribution for every degrees of freedom ν = 1, 2, 3, 4, . . . . Techni-
cally, t-distributions exists for non-integer values of ν (all real numbers ν > 0), but these
t-distributions are not of interest to us. The t-distributions are symmetric, bell-shaped dis-
tributions centered at the origin, much like the Normal(0, 1) distribution, but they differ in
an important way: The cardinal property of the t-distributions is that they have heavier
tails than the Normal(0, 1) distribution for each ν < ∞. For smaller values of ν the tails
are heavier and for larger values of ν the tails become more like those of the Normal(0, 1)
distribution.

The probability density function of the tν-distribution is given by

f(x) =
Γ(ν+1

2
)

νπΓ(ν
2
)

(
1 +

x2

ν

)− ν+1
2

, −∞ < x <∞,

where Γ(z) =
∫∞
0
uz−1e−udu for z > 0, but we will not need to use this function in class.

If we let ν → ∞, the probability density function of the tν-distribution approaches that of
the Normal(0, 1) distribution, as the plot below depicts:
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ν =∞, equal to Normal(0, 1) pdf

ν = 1
ν = 2

pdf of t-dist with ν = 10

0−1 1 2−2 3−3 4−4 x

As we have done for the Normal(0, 1) distribution and for the chi-squared distributions,
we would like to define a symbol for each quantile of each t-distribution: For any number
0 < ξ < 1, let tν,ξ be the value such that

P (T > tν,ξ) = ξ,

where T is a random variable having the t-distribution with degrees of freedom ν. The
quantity tν,ξ thus admits the depiction

0 tν,ξ

Area = ξ

pdf of tν distribution

x

The quantiles tν,ξ for several values of ν and some oft-encountered values of ξ are tabulated
on page 817 of the textbook.

We are now prepared to give an expression for a (1−α)100% confidence interval for µ when
the population is Normal with unknown variance.

Confidence intervals based on the t-distribution

We work towards an expression for our confidence interval in the same way as before. Given
the discussion in the previous two sections, we may write

P

(
−tn−1,α/2 ≤

X̄n − µ
Sn/
√
n
≤ tn−1,α/2

)
= 1− α.
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Rearranging the expression in the probability statement until the mean µ remains alone in
the middle, we get

P

(
X̄n − tn−1,α/2

Sn√
n
≤ µ ≤ X̄n + tn−1,α/2

Sn√
n

)
= 1− α.

This implies that a (1− α)100% confidence interval for µ may be constructed as

X̄n ± tn−1,α/2
Sn√
n
.

We now state this formally:

Result: Confidence interval for mean of Normal population with σ unknown

For a random sample X1, . . . , Xn
ind∼ Normal(µ, σ2), with σ unknown,

X̄n ± tn−1,α/2
Sn√
n

is a (1− α)× 100% confidence interval for µ.

Exercise. Using the data set Loblolly in R, which one can access by entering data(Loblolly)
into the console, build a 95% confidence interval for the average height µ of Loblolly pines
which are ten years old.

Answer: Type
x <- Loblolly$height[Loblolly$age==10]

This stores the desired values in the vector x.

The sample size is n = 14, which we can get by entering length(x) into the console. Since
the sample size is less than 30, we must make sure that the data are Normally distributed
before we can use the confidence interval based on the t-distribution. We make a Normal
QQ plot with the commands qqnorm(scale(x)) and abline(0,1). This produces the plot
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There is some wiggliness to the points in the plot, but it looks pretty safe to assume that
the population from which the sample was drawn is Normally distributed.

We can compute X̄n by typing mean(x), which gives X̄n = 27.44214, and we can compute
s by typing sd(x), which gives s = 1.537887. As the sample size is n = 14, the relevant
t-distribution is the t-distribution with degrees of freedom 13. The value of α corresponding
to a 95% level of confidence is α = .05.

We get from the table on page 817 that

t13,.025 = 2.160.

A 95% confidence interval for µ is thus given by

27.44214± 2.160
1.537887√

14
= (26.55, 28.33).

Large-sample confidence interval for µ with σ unknown

So far we have assumed that the population distribution was Normal(µ, σ2), with σ2 un-
known. We now consider the case in which the population distribution is not Normal. It
turns out the confidence interval

X̄n ± tn−1
Sn√
n
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does not have a justification when the population distribution is not Normal. For large
sample sizes, however, we find that the central limit theorem works in our favor. A result
called Slutzky’s theorem allows us to make the following claim about how the quantity
(X̄n − µ)/(σ/

√
n) behaves when σ is replaced by Sn, as n becomes large:

Sampling distribution result: Corollary of central limit theorem and Slutzky’s theorem

Let X1, . . . , Xn be a random sample from a population with mean µ and E|X1|4 < ∞.
Then

X̄ − µ
Sn/
√
n

has a distribution more and more like the Normal(0, 1)

distribution for larger and larger sample sizes n.

We can use the above result to argue that when our sample comes from a non-Normal
population, the interval

X̄n ± zα/2
Sn√
n
,

in which zα/2 is used instead of tn−1,α/2 in spite of the fact that σ has been replaced by Sn,
will still contain the population mean µ with probability close to 1−α, provided the sample
size is “large”.

We now state this formally:

Result: Large-sample CI for µ, population not-Normal

Let X1, . . . , Xn be a random sample from a population with mean µ and E|X1|4 < ∞.
Then

X̄n ± zα/2
Sn√
n

is an approximate (1−α)× 100% confidence interval for µ when n is large (n ≥ 30, say).

The condition E|X1|4 < ∞ in the result is a technical one that we needn’t worry about in
this course; it basically says that the distribution cannot be too heavy-tailed, which ensures
that accuracy of Sn in estimating σ improves as the sample size is increased.

Another way to justify the confidence interval X̄n±zα/2Sn/
√
n when n is large is by recalling

that the t-distributions become more and more like the standard Normal distribution for
larger and larger values of the degrees of freedom parameter. That is, for larger and larger
sample sizes n, the quantity tn−1,α/2 becomes closer and closer to the quantity zα/2 for any
choice of α. This means that for large sample sizes it is not very important whether we use
the t-distribution or the standard Normal distribution to build confidence intervals!
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Specifically, we see that for large n we have

X̄n ± tn−1,α/2
Sn√
n
≈ X̄n ± zα/2

Sn√
n
.

The following section summarizes when we should use which interval.

When to use which interval?

Can do nothing so far

n < 30

X̄n ± zα/2 Sn√n (approx)

σ unknown

X̄n ± zα/2 σ√
n

(approx)

σ kno
wn

n ≥
30

population
non-N

orm
al

X̄n ± tn−1,α/2 Sn√n (exact)

σ unknown

X̄n ± zα/2 σ√
n

(exact)

σ kno
wn

po
pu
la
tio
n
N
or
m
al

Note that in order to use the t-distribution, we must assume that the data come from a
Normal distribution. If the data do not come from a Normal distribution, we require a large
sample size, n ≥ 30 as a rule of thumb. In the non-Normal but large-n case, we rely on the
phenomenon described by the Central Limit Theorem—that the standardized sample mean
becomes more and more Normal as the sample size grows.
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