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Hypothesis testing

A statistical inference is a conclusion about a population based on a random sample. More
specifically, given a statement about the population, a statistical inference is a decision
to reject or not to reject the statement in light of the sample data. In the language of
statistical inference, the statement subject to our rejection or non-rejection is called the null
hypothesis. The statement which conveys the opposite about the population is called the
alternate hypothesis. We typically denote the null and alternate hypotheses as H0 and H1.
We read H0 as “H nought.”

For example, suppose X is a random variable with unknown mean µ. It could represent a
draw from a population with an unknown mean µ. A null hypothesis could be

H0: µ = 5,

to which the alternate hypothesis would be

H0: µ 6= 5.

To reach a decision regarding H0 and H1, we consider the evidence contained in a random
sample X1, . . . , Xn of X values. Our statistical inference, that is our decision regarding H0

and H1, is always one of the following:

1. “We reject H0 and therefore conclude that H1 is true.”

2. “We do not reject H0.”

For the second case people also like to say, “We fail to reject H0.” It is important to note
that if we do not reject H0, we do not conclude that H0 is true. We simply say, “We do not
reject H0,” or, “Our data do not lead us to reject H0.”

Deciding from the sample data whether to reject or not to reject the null hypothesis is referred
to as testing the null hypothesis. In order to test the null hypothesis, we will compute from
our random sample a quantity called a test statistic. From the test statistic we will judge
the plausibility of the null hypothesis in light of the data.

1



Forms of the null and alternate hypothesis for µ and p

The null and alternate hypotheses are mathematical expressions involving population pa-
rameters. As a convention, the null hypothesis H0 always contains an equality. In this
course, for statistical inference about the mean µ, the hypotheses H0 and H1 will always be
one of the following:

H0: µ ≥ µ0 or H0: µ = µ0 or H0: µ ≤ µ0

H1: µ < µ0 H1: µ 6= µ0 H1: µ > µ0,

where µ0 is a specific value of the unknown parameter µ used to define the null hypothesis.
Sometimes we call µ0 the null value of µ. Note that the book will write

H0: µ = µ0 or H0: µ = µ0 or H0: µ = µ0

H1: µ < µ0 H1: µ 6= µ0 H1: µ > µ0.

For statistical inference about a proportion p, the hypotheses H0 and H1 in this course will
always be one of the following:

H0: p ≥ p0 or H0: p = p0 or H0: p ≤ p0
H1: p < p0 H1: p 6= p0 H1: p > p0,

where p0 is a specific value of the unknown parameter p used to define the null hypothesis.
Sometimes we call p0 the null value of p. Note that the book will write

H0: p = p0 or H0: p = p0 or H0: p = p0
H1: p < p0 H1: p 6= p0 H1: p > p0.

More complex hypotheses could be constructed, but hypotheses of these forms are the most
common in practice.

Example. Consider 6.45 from the text. What are the relevant hypotheses H0 and H1?
What logic led everyone to reject H0?

Type I and Type II errors

Since we are using data from a random sample to make conclusions about a population, there
is always a chance that our conclusions will be false. If we were to repeat our experiment
or gather our data many many times, we would sometimes draw a sample leading us to
reject H0 and would sometimes draw a sample leading us to not reject H0. We would like to
test hypotheses in such a way that we control the probability of reaching a false conclusion.
There are two ways in which our conclusion can be false:
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1. Reject H0 when H0 is true. This is called a Type I error.

2. Fail to reject H0 when H0 is false. This is called a Type II error.

We approach hypothesis testing with a view to controlling the probability of a Type I error.
Suppose we denote by α the maximum Type I error rate (or probability of a Type I error)
we are willing to allow. Then we would like to test hypotheses in such a way that we do not
make Type I errors more than a proportion α of the time. The value α is also called the
significance level.

We denote by β the rate at which we commit Type II errors, that is, we let β represent the
probability with which we fail to reject H0 when H0 is false. It turns out that this probability
is not directly under our control, so we approach hypothesis testing with the Type I error
probability α in mind.

We can summarize the outcomes of a test of hypotheses in the following table:

H0 true H0 false
reject H0 Type I error correct decision

fail to reject H0 correct decision Type II error

We aim to define our tests of hypotheses so that for a choice of α made by the researcher,
the probabilities corresponding to these outcomes satisfy

H0 true H0 false
P (reject H0) ≤ α = 1− β

P (fail to reject H0) > 1− α = β

for β as small as possible.

It is important to remark that β is not under our control: it depends on the extent to which
the null hypothesis is false. We will discuss β and 1− β in greater detail later on.

Testing hypotheses about µ (σ known)

Suppose that X1, . . . , Xn are a random sample of X values, where X has unknown mean µ
and known variance σ2. Our best guess of µ from the sample is X̄n, so in order to test a
hypothesis concerning µ, we should start by looking at the value of X̄n. Let’s consider each
possible set of hypotheses about µ in turn:
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Values of X̄n which are far away from µ0 in the direction of the alternative hypothesis cast
doubt on the null hypothesis. When there is enough doubt, we will reject H0. To be precise
about how much doubt is enough doubt we specify for each set of hypotheses a region such
that if X̄n falls within this region we reject H0. Moreover, we choose this region such that
the Type I error probability does not exceed α. We can depict our choices of rejection region
as follows:
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Let us define the quantity Ztest to be the quantity

Ztest =
X̄n − µ0

σ/
√
n
,

since our decisions about rejecting H0 depend in all cases on this quantity. We shall call
this quantity the test statistic. Now we can summarize our decision rules (how we decide to
reject H0 or not) in terms of the test statistic Ztest. At significance level α, when σ is known,
we have the following decision rules:

H0: µ ≥ µ0 H0: µ = µ0 H0: µ ≤ µ0

H1: µ < µ0 H1: µ 6= µ0 H1: µ > µ0

Reject H0 if Ztest < −zα Reject H0 if |Ztest| > zα/2 Reject H0 if Ztest > zα

The middle test is called a two-sided test, because we reject H0 if X̄n is far enough above or
below µ0; the other two tests are called one-sided tests, because we reject H0 only when X̄n

is far enough below µ0 or only when X̄n is far enough above µ0.

The value to which we compare the test statistic in order to make our decision whether to
reject H0 is called the critical value. The critical values of the above tests are −zα, z−α/2,
and zα. For each test, the critical value defines what we call a rejection region; the rejection
region of a test is the set of values such that when the test statistic lies in that set the null
hypothesis is rejected.

Exercise. Refer to 6.92 of the textbook. Suppose a bottler of soft-drinks claims that its
bottling process results in an internal pressure of 157 psi with a standard deviation σ = 3
psi. You are interested in contracting with the bottler, but you will not do so if the mean
internal pressure is less than what the producer stated.

1. What are the relevant hypotheses?

Answer: Look for the strict inequality. This goes in the alternate hypothesis. So
H1: µ < 157 and thus H0: µ ≥ 157. If we reject H0, we conclude H1 and we do not
purchase from this bottler.

2. Suppose you collect a sample of size n = 40 and get a sample mean of X̄n = 155.7.
Suppose σ = 3. Do you reject or not reject the null hypothesis at the α = 0.05 signifi-
cance level?

Answer: We have a sample mean which is below the mean claimed by the bottler,
but is it low enough for us to reject the bottler’s claim? To find out, we must compute
the test statistic:

X̄n − µ0

σ/
√
n

=
155.7− 157

3/
√

40
= −2.741.
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This value lies in the rejection region, as it is less than the critical value −z0.05 =
−1.645, so we reject the null hypothesis, concluding that the bottler’s claim is false.

Exercise. Refer to 6.84 of the textbook. A machine should produce ball bearings such that
the standard deviation of the diameters is σ = 0.001 inches. The mean diameter should
be 0.5 inches. You would like to know whether the mean diameter of the ball bearings is
different from the targeted diameter of 0.5 inches.

1. What are the relevant hypotheses?

Answer: Put the strict inequality in the alternative: The key word is “different from,”
which is “6=”. So we have H1: µ 6= 0.5 and H0: µ = 0.5. If we reject H0, we conclude
that the machine is not producing ball bearings with the targeted mean diameter.

2. Suppose that the diameters are Normally distributed. You take a random sample of 5
ball bearings and compute a mean diameter of 0.499. Make a decision to reject or not
to reject the H0 at the α = 0.05 significance level.

Answer: We will reject H0 if the sample mean is sufficiently far away from 0.5. In
order to know if the X̄n = 0.499 is far enough away from 0.5 for us to reject H0: µ = 5,
we must compute the test statistic:

X̄n − µ0

σ/
√
n

=
0.499− 0.5

0.001/
√

5
= −2.24.

We compare the absolute value of this with the critical value z0.025 = 1.96. Since
2.24 > 1.96, the test statistic lies in the rejection region, so we reject H0 and conclude
at the 0.05 significance level that the machine is not producing ball bearings with mean
diameter 0.5.

Exercise. Suppose you have a random sample of size n = 35 with sample mean X̄n = 25
from a right-skewed population with unknown mean µ and variance σ = 10.

1. Test the hypotheses
H0: µ ≥ 27 versus H1: µ < 27

at significance level α = 0.05.

Answer: The null value µ0 of µ is µ0 = 27. We will reject H0: µ ≥ 27 if the sample
mean X̄n is far enough below µ0 = 27. To determine whether X̄n is far enough below
µ0 = 27, we compute the test statistic

X̄n − µ0

σ/
√
n

=
25− 27

10/
√

35
= −1.18.
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We now compare the value of the test statistic to the critical value −zα = −z.05 =
−1.645. Since −1.18 > −1.645, the test statistic does not lie in the rejection region, so
we fail to reject H0: µ ≥ 27 at the 0.05 significance level; X̄n is not far enough below
µ0 = 27 for us to reject the claim that µ ≥ 27.

2. Test the hypotheses
H0: µ = 27 versus H1: µ 6= 27

at significance level α = 0.05.

Answer: The value of the test statistic is the same, but now we compare its absolute
value to the critical value zα/2 = z0.025 = 1.96. Since | − 1.18| < 1.96, the test
statistic does not lie in the rejection region, so we fail to reject H0: µ = 27 at the 0.05
significance level; the sample mean X̄n is not far enough away from µ0 = 27 in order
for us to reject the claim that µ = 27.

3. Test the hypotheses
H0: µ ≤ 27 versus H1: µ > 27

at significance level α = 0.05.

Answer: We note that the value of the sample mean X̄n = 25 is in support of the
null hypothesis. The data cannot lead us to reject it. We fail to reject H0.

Testing hypotheses about µ (σ unknown)

We just replace σ with s in the above as well as zα with tn−1,α and zα/2 with tn−1,α/2. We
can draw pictures in this setting which are analogous to those in the previous section:
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Let us define

Ttest =
X̄n − µ0

Sn/
√
n
,

noting that our decisions about rejecting H0 depend in all cases on this quantity. Now Ttest
is our test statistic when σ is unknown, and we have the following decision rules for rejecting
H0 at significance level α:

H0: µ ≥ µ0 H0: µ = µ0 H0: µ ≤ µ0

H1: µ < µ0 H1: µ 6= µ0 H1: µ > µ0

Reject H0 if Ttest < −tn−1,α Reject H0 if |Ttest| > tn−1,α/2 Reject H0 if Ttest > tn−1,α

The critical values −tn−1,α, tn−1,α/2, and tn−1,α which define the rejection regions come from
the t-distribution with n− 1 degrees of freedom.

Exercise. The average height of 14 randomly selected ten-yr-old Loblolly pine trees was
X̄n = 27.44 and the sample standard deviation was Sn = 1.54. Assume that the heights of
ten-yr-old Loblolly pine trees are Normally distributed.

1. Test the hypotheses
H0: µ ≤ 26 versus H1: µ > 26

at significance level α = 0.05.

Answer: The null value µ0 of µ is µ0 = 26. We will reject H0 if X̄n is far enough
above µ0 = 26. To see whether X̄n is far enough above µ0 = 26, we compute the test
statistic

X̄n − µ0

Sn/
√
n

=
27.44214− 26

1.537887/
√

14
= 3.5.

The critical value to which we must compare the test statistic is tn−1,α = t13,0.05 = 1.77.
Since the value of our test statistic exceeds the α = 0.05 critical value, it lies in the
rejection region, so we reject H0: µ ≤ 26 at the 0.05 significance level.

2. Test the hypotheses
H0: µ = 26 versus H1: µ 6= 26

at significance level α = 0.05.

Answer: We compute the same test statistic: Its value is 3.5. Now, however, we
check whether it is greater than the critical value t13,α/2 in absolute value. We have
t13,0.025 = 2.16. Since 3.5 > 2.16, the test statistic lies in the rejection region, so we
reject H0: µ = 26 at the 0.05 significance level.
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3. Test the hypotheses
H0: µ ≥ 26 versus H1: µ < 26

at significance level α = 0.05.

Answer: The value of X̄n exceeds µ0 = 26, so it lies in region specified by H0. The
sample contains no evidence against H0, so we fail to reject H0: µ ≥ 26.

Connection between CIs and two-sided tests about µ

Whenever we have hypotheses of the form

H0: µ = µ0 versus H1: µ 6= µ0

we can perform a test at significance level α by simply checking whether the (1 − α)100%
confidence interval contains µ0. If the confidence interval contains µ0, we fail to reject H0.
If the confidence interval does not contain µ0, we reject H0.

Exercise. The average height of 14 randomly selected ten-yr-old Loblolly pine trees was
X̄n = 27.44 and the sample standard deviation was s = 1.54. Assume that the heights of
ten-yr-old Loblolly pine trees are Normally distributed. Test the hypotheses

H0: µ = 26 versus H1: µ 6= 26

at significance level α = 0.05.

Answer: We can build a 95% confidence interval and see if it contains 26. The 95%
confidence interval is

X̄n ± t13,α/2
Sn√
n

= 27.44± 2.160
1.54√

14
= (26.55, 28.33)

The 95% confidence interval does not contain 26, so we reject H0: µ = 26 at the α = 0.05
significance level.

Testing hypotheses about a proportion p

As in the case of the mean µ, we will consider the following possible sets of hypotheses about
the population proportion p:

H0: p ≥ p0 or H0: p = p0 or H0: p ≤ p0
H1: p < p0 H1: p 6= p0 H1: p > p0,
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We note again that the textbook will write

H0: p = p0 or H0: p = p0 or H0: p = p0
H1: p < p0 H1: p 6= p0 H1: p > p0.

To test any of these hypotheses, we will consider how far away the sample proportion p̂ is
from p0 in the direction of the alternative. We will reject H0 if p̂ is far enough away from the
null value p0 in the direction of the alternative. In order to determine how far is far enough,
we will use the fact that if the true population proportion p is equal to p0, the quantity

p̂− p0√
p0(1− p0)

n

has approximately the Normal(0, 1) distribution for large enough n. This quantity will be
our test statistic.
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We can draw pictures analogous to those we drew when considering hypotheses about a
mean µ. Firstly, our intuition tells us whether we should reject H0 when p̂ is far below, far
above, or far away from p0 in either direction:
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We may define the critical regions of the tests by going to the Z-world; however, we must
remember that p̂ is only Normally distributed when we expect a sufficient number of successes
and failures to be present in the sample. In the context of hypothesis testing, we require
that np0 ≥ 15 and n(1− p0) ≥ 15. Then we may draw the following pictures:
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Let us use reuse the notation Ztest for the test statistic

Ztest =
p̂− p0√
p0(1−p0)

n

,

upon which our decision to reject H0 in all cases depends. Then we may summarize our
decision rules for rejecting H0 at significance level α by the following:

H0: p ≥ p0 H0: p = p0 H0: p ≤ p0
H1: p < p0 H1: p 6= p0 H1: p > p0

Reject H0 if Ztest < −zα Reject H0 if |Ztest| > zα/2 Reject H0 if Ztest > zα

Exercise. A scientist is interested in seeing whether the presence of a parasite tips the sex
ratio of the hosts’ offspring in favor of females (which would be advantageous to the parasite,
as it inhabits only females). A sample of size n = 500 offspring from parasite-infected females
is collected, among which there are 287 females.

1. What are the relevant hypotheses?

Answer: Assuming that the proportion of females in the offspring of the host species
is 1/2 in the absence of the parasite, the hypotheses of interest are

H0: p ≤ 1/2 versus H1: p > 1/2,

where p is the proportion of females in the offspring of parasite-infected hosts.

2. Carry out a test of the hypotheses at the α = 0.05 significance level.

Answer: We first compute the test statistic

Ztest =
287/500− 1/2√
1/2(1− 1/2)/500

= 3.309.

The critical value is z0.05 = 1.645. Since 3.309 > 1.645, the test statistic lies in the
rejection region, so we reject H0 and conclude that the parasite indeed tips the sex
ratio of offspring in favor of females.

Exercise. Refer to 8.82 of the textbook. In an tasting experiment, 121 students were
blindfolded, and each student was fed either a red or green gummy bear, (red with probability
1/2 and green with probability 1/2) and asked to identify which color it was based on the
taste. Among the 121 students, 97 correctly identified the color of the gummy bear.
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1. If the students guessed “red” or “green” based on flipping a coin, with what probability
would they guess the color correctly?

Answer: The students would guess correctly with probability 1/2.

2. Suppose you wish to know if the students are doing better or worse than guessing.
What are the relevant hypotheses?

Answer: If p is the probability of guessing correctly based on the taste, we are
interested in testing

H0: p = 1/2 versus H1: p 6= 1/2.

3. Test the hypotheses at the α = 0.01 significance level.

Answer: The test statistic is

Ztest =
97/121− 1/2√

1/2(1− 1/2)/121
= 6.644.

The α = 0.01 critical value is z0.005 = 2.576. Since 6.644 > 2.576, the test statistic lies
in the rejection region, so we reject H0 at the 0.01 significance level.
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