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Comparative experiments and analysis of variance

Much of the content in this section was developed for the first time by the British statistician
and biologist Ronald A. Fisher in the early 1900s.

Figure 1: Ronald A. Fisher (1890) – (1962)

We will first draw a distinction between two types of studies which we shall call comparative
experiments and comparative observational studies.

Comparative experiments place subjects under different conditions through random
assignment and compare outcomes.

– Randomly assign plant clones to different drought conditions and compare C02

uptake.

– Randomly assign tracts of a field to different fertilizer treatments and compare
yields.
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– Randomly assign half of a group of rats to a period of radon exposure, keeping the
other half unexposed, and compare metrics of carcinogenesis between the groups.

Comparative observational studies compare subjects with different properties or which
exist under different circumstances.

– Compare development metrics of children from different socio-economic back-
grounds.

– Compare attitudes toward recycling of college students in Columbia and Greenville.

The cardinal difference between an experiment and an observational study is that in an
experiment the investigator randomly assigns subjects to different conditions, whereas in an
observational study the investigator does not assign subjects to conditions, but observes the
subjects without changing their circumstances.

Observational studies are beset with the problem of confounding variables. A confounding
variable is any unrecorded property or circumstance of the subjects which is associated with
the outcome of interest as well as with the any of the properties or circumstances of the
subjects which are recorded in the study. For example, an observational study may attempt
to relate children’s school grades (the outcome of interest) to the income of their parents, but
there may be no information available about alcoholism in the children’s homes; if the rate
of alcoholism in the home is related to income as well as to children’s grades in school, then
alcoholism in the home is a confounding variable. If this is the case, a study which measures
only children’s grades and the income of their parents cannot attribute lower grades to lower
parental income, even if the data show that children whose parents earn less make poorer
grades.

Confounding variables lurk in every observational study. Yes, in all of them. It is therefore
inappropriate to draw conclusions of causality from any observational study. You cannot
say, “Circumstance A causes outcome Y,” on the basis of an observational study, because
there may be an unrecorded circumstance B commonly occurring with A which is the true
agent causing outcome Y. One cannot know. One can only say, “Outcome Y is associated
with circumstance A,” by which we mean that the two often occur together, but A may or
may not exert a causal influence upon Y.

Experiments eliminate the problem of confounding variables through the random assignment
of the subjects to different conditions. The process of random assignment disassociates all
unrecorded properties or circumstances of the subjects from the conditions of interest in the
study. After randomization, no property or circumstance of the subjects has an association
with the conditions imposed by the investigator. As a result, experiments, in contrast to
observational studies, are capable of yielding causal conclusions.

The rest of this lecture will concern comparative experiments.
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A vocabulary for comparative experiments

Words to know are

• Treatment: Any condition imposed by the investigator is called a treatment.

• Experimental unit (EU): we generically refer to each subject in the study, whether a
person, object, animal, or other entity, as an experimental unit.

• Response: The outcome which we measure on each experimental unit after adminis-
tering the treatment is called the response.

Example. This example is taken from [1]. Twelve steaks were randomly assigned (three
each) to four different packaging conditions (Commercial, Vacuum, Mixed Gas, CO2). After
9 days at 4◦ C, the number of bacteria per cm2 over the surface of the steak was recorded. Of
interest is whether “some form of controlled gas atmosphere would provide a more effective
packaging environment [than commercial or vaccuum] for meat storage”. The raw data are

Steak Packaging log(# bact/cm2)
1 Commercial 7.66
6 Commercial 6.98
7 Commercial 7.80
12 Vacuum 5.26
5 Vacuum 5.44
3 Vacuum 5.80
10 Mixed Gas 7.41
9 Mixed Gas 7.33
2 Mixed Gas 7.04
8 CO2 3.51
4 CO2 2.91
11 CO2 3.66

The experimental units are the steaks, the treatments are the four packaging types, and the
response is the natural logarithm of the number of bacteria per cm2 over the surface of each
steak.

It is natural to compute the means of each treatment group and to compare them:

Packaging mean of log(# bact/cm2)
Commercial 7.48

Vaccuum 5.50
Mixed Gas 7.26

CO2 3.36
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From this table, it looks like the packaging with CO2 achieved the least bacterial growth.
However, we know by now that need to do a more rigorous analysis than just looking at the
sample means. If we were to repeat this experiment with 12 different steaks, we would get
different response values and different treatment means. The question is, to what extent do
the treatment means differ because of true differences in the packaging methods and to what
extent do they differ because of experimental variability? We address these questions in the
following with a view to hypothesis testing.

The cell means model (“One-way ANOVA”)

In statistics we often try to make sense of where our data come from by writing down a
mathematical expression for each value. We call this expression a model, and it is supposed
to describe the mechanism working in the background to produce the data we observe.
Writing down a model for our data helps us to formulate testable hypotheses which match
our research questions. For the data in Example , a model called the cell means model or
the one-way ANOVA model is often posited as the mechanism through which the response
values come to be.

Before we can write down the cell means model, we need to define some quantities pertaining
to a comparative experiment:

• Let K denote the number of treatments.

• Let n1, . . . , nK denote the numbers of EUs assigned to treatments 1, . . . , K, respec-
tively.

• Let N = n1 + · · ·+ nK denote the total number of EUs.

• let Yij denote the response of the jth experimental unit of the ith treatment group for
j = 1, . . . , ni and i = 1, . . . , K.

Now we can define the cell means model.
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Definition: Cell means or one-way ANOVA model

Under the cell means or one-way ANOVA model we have

Yij = µi + εij, εij
ind∼ Normal(0, σ2

ε) (1)

for j = 1, . . . , ni and i = 1, . . . , K, where

• µi is called the population mean for the ith treatment

• εij is called an error term and represents the deviation of the response Yij from the
population mean of treatment i.

By the expression εij
ind∼ Normal(0, σ2

ε) it is meant that all the error terms εij are independent
from one another and each one has a Normal distribution centered at zero with variance σ2

ε .
The independence of the εij means that the value of one does not affect the value of any
other one.

Under the cell means or one-way ANOVA model, it is typically of interest to estimate
the population treatment means µ1, . . . , µK and to test hypotheses about them. Natural
estimators of µ1, . . . , µK are given by

Ȳi. =
1

ni

ni∑
j=1

Yij, i = 1, . . . , K,

which are the means of the responses in the treatment groups (placing a ‘.’ in the subscript
in the place of an index over which a sum has been taken is a common convention).

In Example with the steaks, we have K = 4 for the four packaging types, n1 = n2 =
n3 = n4 = 3, since three steaks were assigned to each treatment, and the total number of
experimental units is N = n1 + n2 + n3 + n4 = 12. We then have the responses Y11 =
7.66, Y12 = 6.98, . . . , Y43 = 3.66. The means of the treatment groups are Ȳ1. = 7.48, Ȳ2. =
5.50, Ȳ3. = 7.26, and Ȳ4. = 3.36.

We may depict a cell means model with K = 4 treatments as
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,

whereby the investigator imagines data coming from K different distributions such that the
distributions are centered at the population treatment means µ1, . . . , µK . Moreover, each
distribution is Normal and all have the same variance, which is the variance σ2

ε of the error
term in the cell means model. The sample treatment means Ȳ1., . . . , ȲK. are the investigator’s
guesses from the observed data at the unknown values of µ1, . . . , µK .

Hypothesis testing for the cell means model

In comparative experiments, the foremost research question is: Do/does any of the treat-
ments affect the response? We can formulate this question in the following null and alternate
hypotheses:

H0: µ1 = · · · = µK

H1: µi 6= µi′ for some i 6= i′, i.e. not all treatment means are equal.

As we have previously done, we will test these hypotheses by computing a test statistic; once
we have the test statistic we can compare it to a critical value or get a p-value from it in
order to decide whether or not to reject H0.

We may gather intuition for constructing a test statistic by picturing the cell means model
under the null hypothess H0: µ1 = · · · = µK . Returning to our example in which K = 4,
the investigator now imagines all the data coming from a single distribution:
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A new quantity which we may call the overall mean is introduced in the above picture. If it is
assumed that all responses in all the treatment groups really come from a single distribution
centered at a common mean µ, then a sensible estimator of the common mean is the mean
of all the responses pooled together, which we write as

Ȳ.. =
1

N

K∑
i=1

ni∑
j=1

Yij.

In Example with the steaks, we have

Ȳ.. =
1

12
(7.66 + 6.89 + . . . 3.66) = 5.9.

We now wish to construct a test statistic which gauges how much evidence the data carries
against the null hypothesis. What would cast doubt on H0? The more spread out the
treatment means Ȳ1., . . . , ȲK. the more implausible H0 becomes. So our test statistic should
measure the spread of our treatment means Ȳ1., . . . , ȲK. and, under the null hypothesis, it
should have a known probability distribution which allows us to look up a p-value.

The following result gives us some direction.
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Result 1: Idealized test statistic assuming σε known

nder the cell means model (1) under H0: µ1 = · · · = µK , we have

K∑
i=1

(
Ȳi. − Ȳ..
σε/
√
ni

)2

∼ χ2
K−1.

Recall that χ2
K−1 denotes the chi-squared distribution with degrees of freedom equal to

K − 1.

The quantity in the above result measures how spread out the treatment means are, as it
is the sum of squared deviations of the treatment means from the overall mean divided by
σε/
√
n. The larger this quantity is, the more implausible is H0. Moreover, this quantity

has a known distribution under H0, which means we can find p-values; that is, we can find
the probability, assuming that H0 is true, of getting a larger value (carrying more evidence
against H0) of this quantity than the value we observed. The problem is that σ2

ε is unknown,
so we cannot compute this quantity from the data.

Define the estimator σ̂2
ε of σ2

ε as

σ̂2
ε =

1

N −K

K∑
i=1

ni∑
j=1

ε̂2ij,

where ε̂ij = Yij − Ȳi., j = 1, . . . , ni, i = 1, . . . , K are the deviations of the responses from
their treatment means. These deviations are called residuals. The residuals ε̂ij are like the
sample version of the noise or error terms εij, and the above formula uses them to estimate
the variance σ2

ε .

For Example with the steaks, the residuals are shown in the fourth column of the table
below:

Steak Packaging log(# bact/cm2) Ȳi. ε̂ij
1 Commercial 7.66 7.48 0.18
6 Commercial 6.98 7.48 −0.50
7 Commercial 7.80 7.48 0.32
12 Vacuum 5.26 5.50 −0.24
5 Vacuum 5.44 5.50 −0.06
3 Vacuum 5.80 5.50 0.30
10 Mixed Gas 7.41 7.26 0.15
9 Mixed Gas 7.33 7.26 0.07
2 Mixed Gas 7.04 7.26 −0.22
8 CO2 3.51 3.36 0.15
4 CO2 2.91 3.36 −0.45
11 CO2 3.66 3.36 0.30
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Using the residuals in the table, we would compute σ̂2
ε as

σ̂2
ε =

1

12− 4

[
(0.18)2 + (−0.50)2 + · · ·+ (0.30)2

]
= 0.11585.

Then we have σ̂ε = 0.34037.

Now the next result presents a feasible test statistic (“feasible” meaning that we can actually
compute it from the data) which has a distribution called an F distribution.

Result: Distribution of F-statistic under null hypothesis

Under the cell means model (1) under H0: µ1 = · · · = µK , the quantity

Ftest =
1

K − 1

K∑
i=1

(
Ȳi. − Ȳ..
σ̂ε/
√
ni

)2

has the F -distribution with numerator degrees of freedom equal to K−1 and denominator
degrees of freedom equal to N −K.

We will use this result to get a p-value for testing H0: µ1 = · · · = µK , but first we introduce
the F distributions.

For Example with the steaks, we have

Ftest =
1

4− 1

[(
7.48− 5.9

0.34037/
√

3

)2

+

(
5.50− 5.9

0.34037/
√

3

)2

+

(
7.26− 5.9

0.34037/
√

3

)2

+

(
3.36− 5.9

0.34037/
√

3

)2
]

= 94.58296.

Is this large enough for us to reject H0: µ1 = µ2 = µ3 = µ4?

The F -distributions

An F -distribution arises when the ratio of two independent Chi-square random variables is
taken such that each is divided by its degrees of freedom. Formally:
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Result: The F random variable as a ratio of chi-squared random variables

Let W1 ∼ χ2
ν1

and W2 ∼ χ2
ν2

be independent chi-squared random variables with degrees
of freedom ν1 and ν2, respectively. Then

W1/ν1
W2/ν2

∼ Fν1,ν2 ,

where Fν1,ν2 denotes the F -distribution with numerator degrees of freedom equal to ν1 and
denominator degrees of freedom equal to ν2.

The F -distributions are right-skewed distributions and are indexed by two parameters called
the numerator degrees of freedom and the denominator degrees of freedom which they inherit
from the chi-squared distributions in the above definition. If a random variable F has the
F -distribution with numerator degrees of freedom ν1 and denominator degrees of freedom
ν2, we write F ∼ Fν1,ν2 .

As we have defined upper quantiles for the standard Normal distribution, the t-distributions,
and the chi-squared distributions, we define, for 0 < ξ < 1, the value Fν1,ν2,ξ as the value
such that P (F > Fν1,ν2,ξ) = ξ, where F ∼ Fν1,ν2 . The quantity Fν1,ν2,ξ thus admits the
depiction

Fν1,ν2,ξ

Area = ξ

pdf of Fν1,ν2-distribution

F

where the blue curve represents the probability density function of the F -distribution with
numerator degrees of freedom ν1 and denominator degrees of freedom ν2.
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Rejection rule for the equal-means hypothesis

Equipped with the F -distributions, we can establish a rejection rule for H0: µ1 = · · · = µK .
We will reject H0 at significance level α if

Ftest =
1

K − 1

K∑
i=1

(
Ȳi. − Ȳ..
σ̂ε/
√
ni

)2

> FK−1,N−K,α.

That is, we can pull the critical value FK−1,N−K,α from the F distribution with numerator
degrees of freedom K − 1 and denominator degrees of freedom N −K and compare our test
statistic Ftest to it.

We can also simply compute the p-value associated with the value of the test statistic Ftest.
The p-value is equal to the probability

P (F > Ftest), where F ∼ FK−1,N−K ,

which is the area under the pdf of the FK−1,N−K distribution to the right of Ftest.

In Example with the steaks we have Ftest = 94.58 (after rounding). Since there are K = 4
treatments and N = 12 experimental units, we compare the value of Ftest to the upper α
quantile of the F -distribution with numerator degrees of freedom 4−1 = 3 and denominator
degrees of freedom 12 − 4 = 8. For α = 0.01 we have F3,8,0.01 = 7.59 (see the F -table on
pg. 826 of the textbook). Since Ftest = 94.58 > F3,8,0.01 = 7.59 we would reject the null
hypothesis at sigificance level 0.01 and conclude that not all the means are equal.

The p-value is the probability

P (F > 94.58), where F ∼ F3,8.

We can get this probability using the R function pf(), which returns F -distribution proba-
bilities such that

pf(q,df1,df2) = P (F < q), where F ∼ Fdf1,df2.

Thus the p-value is given by

1 - pf(94.584,3,8) = 1.375902× 10−6.

If the assumptions of the cell means model are satisfied for the steaks example, then the
small p-value indicates very strong evidence against the null hypothesis of equal treatment
means. We would conclude at any significance level α greater than 1.376128× 10−6 that the
packaging makes a difference in the mean number of bacteria that grow on the surface of
refrigerated steaks.
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Analysis of variance (ANOVA)

The analysis of variance or ANOVA table decomposes the so-called total variation in the
responses Yij, j = 1, . . . , ni, i = 1, . . . , K into two parts:

1. Between-treatment variation: variability in the responses due to the treatment effects.

2. Within-treatment variation: variability in the responses due to differences among the
experimental units.

We will express the total variability in the response values through the quantity

SSTotal =
K∑
i=1

ni∑
j=1

(Yij − Ȳ..)2,

which we will call the total sum of squares. This quantity is the sum of squared deviations
of the responses from the overall mean Ȳ... The ANOVA approach decomposes this quantity
into the treatment sum of squares

SSTreatment =
K∑
i=1

ni(Ȳi. − Ȳ..)2

and the error sum of squares

SSError =
K∑
i=1

ni∑
j=1

(Yij − Ȳi.)2.

Verily
SSTotal︸ ︷︷ ︸
Total

= SSTreatment︸ ︷︷ ︸
Between

+ SSError︸ ︷︷ ︸
Within

,

where SSTreatment represents between-treatment variation and SSError represents within-treatment
variation. For these quantities, we have the following:

Result: Chi-squared distributions of scaled sums of squares

Under the cell means model (1) under H0: µ1 = · · · = µK , we have

SSTotal /σ
2
ε ∼ χ2

N−1

SSTreatment /σ
2
ε ∼ χ2

K−1

SSError /σ
2
ε ∼ χ2

N−K ,

where N = n1 + · · ·+ nK .
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We find that we can construct our test statistic Ftest in terms of these quantities; that is

Ftest =
1

K − 1

K∑
i=1

(
Ȳi. − Ȳ..
σ̂ε/
√
ni

)2

=
SSTreatment /(K − 1)

SSError /(N −K)
,

such that the test statistic Ftest is the ratio of between-to-within-treatment variability. Let
us give names to the quantities in the numerator and denominator of the last expression;
that is, let

MSTreatment = SSTreatment /(K − 1)

MSError = SSError /(N −K),

and let us call these, respectively, the treatment mean square and the mean squared error.
In the end we may write

Ftest =
MSTreatment

MSError

(
=

Between-treatment variation

Within-treatment variation

)
.

If the treatment means are very spread out relative to the spread of the responses in each
treatment group, the test statistic Ftest will be large, and its p-value will be small. If the
treatment means are close together relative to the spread of the responses in each treatment
group, the test statistic Ftest will be small, and its p-value will be large. Consider the
following illustration.

Example. Consider the three probability density functions depicted in each panel of the
following figure as the distributions of the responses in a cell means or one-way ANOVA
model with K = 3 treatments.

−4 −2 0 2 4 6 8 10

(A)

−4 −2 0 2 4 6 8 10

(B)

−4 −2 0 2 4 6 8 10

(C)

−4 −2 0 2 4 6 8 10

(D)
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Suppose a randomized experiment is conducted for testing the hypotheses H0: µ1 = µ2 = µ3

versus H1: not all means are equal.

1. Of the settings depicted in the four panels, from which would we expect the largest
value of the test statistic F?
The setting in panel (B) exhibits large between-treatment variation and small within-
treatment variation, so we would expect from it the largest value of the test statistic
Ftest.

2. Of the settings depicted in the four panels, from which would we expect the smallest
value of the test statistic F?
The setting in panel (C) exhibits small between-treatment variation and large within-
treatment variation, so we would expect it to produce the smallest value of the test
statistic Ftest.

3. Which two settings are likely to result in greater measures of between-treatment vari-
ation MSTreatment than the other two?
The settings in panels (B) and (D) exhibit larger between-treatment variation than the
other two panels, so we would expect them to produce larger values of MSTreatment.

4. Which two settings are likely to result in greater measures of within-treatment variation
MSError than the other two?
The settings in panels (C) and (D) exhibit larger within-treatment variation than the
other two panels, so we would expect them to produce larger values of MSError.

The ANOVA table

But what about the table? The ANOVA table is a conventional format in which to present
the several quantities introduced in this section. The ANOVA table for the cell means model
looks like this:

Source Sum of Squares df Mean Squares F p-value
Treatment SSTreatment K − 1 MSTreatment Ftest P (F > Ftest)
Error SSError N −K MSError where F ∼ FK−1,N−K
Total SSTotal N − 1

For the steaks example, the ANOVA table is

Source Sum of Squares df Mean Squares F p-value
Treatment 32.873 3 10.9576 94.584 1.375902× 10−6

Error 0.927 8 0.1159
Total 33.800 11

14



This can be obtained from R from the commands below

# read in the data and format it for ANOVA:

bacteria <- c(7.66,6.98,7.80,5.26,5.44,5.80,7.41,7.33,7.04,3.51,2.91,3.66)

packaging <- c( rep("Commercial",3),

rep("Vacuum",3),

rep("Mixed Gas",3),

rep("C02",3))

packaging <- as.factor(packaging)

# estimate the cell means model with lm() function and retrieve ANOVA table:

model <- lm(bacteria ~ packaging)

anova(model)

The output looks like the following (Note that R arranges the columns in the ANOVA table
somewhat differently and does not provide the bottom row.):

Analysis of Variance Table

Response: bacteria

Df Sum Sq Mean Sq F value Pr(>F)

packaging 3 32.873 10.9576 94.584 1.376e-06 ***

Residuals 8 0.927 0.1159

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We will see that the ANOVA tables appear in other contexts as well; they are not intended
solely for the cell-means model.

Checking the assumptions of the cell means model

Implicit in the definition of the cell means model

Yij = µi + εij, εij
ind∼ Normal(0, σ2

ε), j = 1, . . . , ni, i = 1, . . . , K

are some important assumptions about the data-generating mechanism. We will call them
Assumptions (A.1), (A.2), and (A.3):

(A.1) The responses are Normally distributed around the treatment means.

To check: Look at a Normal QQ plot of the residuals

ε̂ij = Yij − Ȳi., j = 1, . . . , ni, i = 1, . . . , K.
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The residuals are the deviations of the responses around the sample treatment means,
so they are the sample version of the error terms εij, which are assumed to be Normal.
The residuals should therefore exhibit Normality in the Normal QQ plot.

(A.2) The variance of the responses is the same in each treatment group.

To check: Look at the residuals versus fitted values plot. In this plot, the residuals
for each treatment group are plotted on the vertical axis against the treatment means
such that the spread of the residuals across the treatment groups can be compared.
The spreads of the residuals should be the same across the treatment groups.

(A.3) The responses are independent from each other.

Cannot check: This assumption cannot be checked from the data, but the random
assignment of the experimental units to the treatment groups and proper control of
experimental conditions should ensure that the responses are independent from each
other.

Continuing with the steaks example, the command plot(lm(bacteria ∼ packaging))

causes R to produce a series of plots, among which are the Normal QQ plot and the residuals
versus fitted values plot:
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It is difficult to see whether the spread of the residuals is the same in all four treatment
groups, as there are only three experimental units in each group, but the spreads are not
drastically different, so we may assume that (A.2) holds. The residuals look to be Normally
distributed from the Normal QQ plot, so we may assume that (A.1) holds.
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