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Comparative experiments and analysis of variance

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Observational studies versus comparative experiments

Comparative experiments randomly assign subjects to different treatments.
Observational studies compare subjects existing in different circumstances.

Exercise: Experimental or observational?

1 Randomly assign plant clones to different drought conditions and measure
CO2 uptake.

2 Compare performance in school of children from different backgrounds.
3 Randomly assign tracts of a field to different fertilizers and compare yields.
4 Compare recycling habits of college students in Greenville and Columbia.
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Observational studies versus comparative experiments

Observational studies are beset with the problem of confounding variables.

Confounding variable: An unrecorded property/circumstance associated with the
outcome of interest as well as with a property/circumstance measured in the study.

Example: Family income and grades in school of children.

Is hours watching TV a confounding variable?
Is hours watching TV associated with grades in school?
Is hours watching TV associated with family income?

If yes to both, hours watching TV would be a confounder if ignored in the study.

The random assignment in comparative experiments breaks associations between
measured and unmeasured variables, eliminating the problem of confounding
variables.

Observational studies cannot establish causation—only association.
Comparative experiments can establish causation.
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Observational studies versus comparative experiments

Vocabulary for comparative experiments
Treatment: A condition imposed by the investigator.
Experimental unit (EU): Each subject in the study—person, animal, etc.
Response: Outcome measured on each EU after treatment applied.

Example: How to package a steak? Twelve steaks assigned to four different
packagings (three to each) and bacteria per cm2 recorded after nine days [1].

Steak Packaging log(# bact/cm2) Steak Packaging log(# bact/cm2)
1 Commercial 7.66 10 Mixed Gas 7.41
6 Commercial 6.98 9 Mixed Gas 7.33
7 Commercial 7.80 2 Mixed Gas 7.04
12 Vacuum 5.26 8 CO2 3.51
5 Vacuum 5.44 4 CO2 2.91
3 Vacuum 5.80 11 CO2 3.66
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Observational studies versus comparative experiments

Example (cont): Here are the treatment means. How can we compare them?

Packaging mean of log(# bact/cm2)
Commercial 7.48
Vaccuum 5.50
Mixed Gas 7.26

CO2 3.36
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The cell means or one-way ANOVA model

Let
K be the number of treatments.
n1, . . . , nK be the numbers of EUs assigned to the treatments.
N = n1 + . . . nK be the total number of EUs.
Yij , j = 1, . . . , ni , i = 1, . . . ,K be response for EU j in treatment group i .

Cell-means or one-way ANOVA model
Assume

Yij = µi + εij , j = 1, . . . , ni , i = 1, . . . ,K ,

where
µ1, . . . , µK are the population means for treatments 1, . . . ,K .

{εij : j = 1, . . . , ni , i = 1, . . . ,K} ind∼ Normal(0, σ2
ε).

.
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The cell means or one-way ANOVA model

 

Estimate µ1, . . . , µK with treatment means Ȳi. = n−1
i

∑ni
j=1 Yij , i = 1, . . . ,K .

Karl B. Gregory (U. of South Carolina) STAT 515 fa 2023 Lec 17 slides 7 / 23



The cell means or one-way ANOVA model

Research question: Do/does any of the treatments affect the response?

Central hypotheses in cell means model

H0: µ1 = · · · = µK

H1: µi 6= µi ′ for some i 6= i ′, i.e. not all treatment means are equal

To build a test statistic, we look at the spread of Ȳ1., . . . , ȲK ..
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The cell means or one-way ANOVA model

 

.

Estimate overall mean with Ȳ.. = N−1∑K
i=1
∑ni

j=1 Yij .
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The cell means or one-way ANOVA model

A preliminary test statistic
Under the cell means model, under H0: µ1 = · · · = µK , we have

K∑
i=1

(
Ȳi. − Ȳ..
σε/
√
ni

)2

∼ χ2
K−1.

A (larger/smaller) value of this casts (more/less) doubt on H0.

Note that σ2
ε is unknown, so we cannot compute this.

With the residuals ε̂ij = Yij − Ȳi., j = 1, . . . , ni , i = 1, . . . ,K , use estimator

σ̂2
ε =

1
N − K

K∑
i=1

ni∑
j=1

ε̂2ij .
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The cell means or one-way ANOVA model

Example (cont): This table includes the residuals from the steak experiment.

Steak Packaging log(# bact/cm2) Ȳi. ε̂ij
1 Commercial 7.66 7.48 0.18
6 Commercial 6.98 7.48 −0.50
7 Commercial 7.80 7.48 0.32
12 Vacuum 5.26 5.50 −0.24
5 Vacuum 5.44 5.50 −0.06
3 Vacuum 5.80 5.50 0.30
10 Mixed Gas 7.41 7.26 0.15
9 Mixed Gas 7.33 7.26 0.07
2 Mixed Gas 7.04 7.26 −0.22
8 CO2 3.51 3.36 0.15
4 CO2 2.91 3.36 −0.45
11 CO2 3.66 3.36 0.30

We get

σ̂2
ε =

1
12− 4

[
(0.18)2 + (−0.50)2 + · · ·+ (0.30)2] = 0.11585.
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The cell means or one-way ANOVA model

A test statistic
Under the cell means model, under H0: µ1 = · · · = µK , we have

Ftest =
1

K − 1

K∑
i=1

(
Ȳi. − Ȳ..
σ̂ε/
√
ni

)2

∼ FK−1,N−K .

In the above, FK−1,N−K denotes the F -distribution with numerator df K − 1 and
denominator df N − K (next slide).

Test H0: µ1 = · · · = µK versus alternative at significance level α with criterion

Reject H0 if Ftest > FK−1,N−K ,α.

The p-value is P(F > Ftest), where F ∼ FK−1,N−K .
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F distributions

The F -distributions
The F -distribution with num. df ν1 > 0 and den. df ν2 > 0 has pdf given by

f (x) =
Γ(ν1+ν2

2 )

Γ(ν1
2 )Γ(ν2

2 )

(
ν1

ν2

) ν1
2

x
ν1
2 −1

(
1 +

ν1

ν2
x

)− ν1+ν2
2

, x > 0.

We write X ∼ Fν1,ν2 .

F-distributed rv as ratio of chi-squared rvs
If W1 ∼ χ2

ν1
and W2 ∼ χ2

ν2
are independent, then

W1/ν1

W2/ν2
∼ Fν1,ν2 .
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F distributions
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F distributions

Fν1,ν2,α

Area = α

pdf of Fν1,ν2-distribution

F

Can use function qf() to look up the values, e.g.

F3,8,0.05 = qf(.95,3,8) = 4.066181
F3,8,0.01 = qf(.99,3,8) = 7.590992

Can get area under the curve to the left with the pf() function.
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F distributions

Exercise: Compute the test statistic Ftest for the steak data and consider

H0: µ1 = µ2 = µ3 = µ4 vs H1: Not all means equal.

1 State whether you reject H0 at the α = 0.05 significance level.
2 Compute the p-value.
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Analysis of Variance (ANOVA)

Analysis of variance (ANOVA): Decomposition of the variability in Yij into

1 Between-treatment variation: Variability due to treatment effects.
2 Within-treatment variation: Variability due to differences among EUs.

SSTotal =
K∑
i=1

ni∑
j=1

(Yij − Ȳ..)
2 (Total variation)

SSTreatment =
K∑
i=1

ni (Ȳi. − Ȳ..)
2 (Between-treatment)

SSError =
K∑
i=1

ni∑
j=1

(Yij − Ȳi.)
2 (Within-treatment)

We have
SSTotal︸ ︷︷ ︸

Total

= SSTreatment︸ ︷︷ ︸
Between

+ SSError︸ ︷︷ ︸
Within

.
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Analysis of Variance (ANOVA)

Sampling distributions of scaled sums of squares
Under the cell means model under H0: µ1 = · · · = µK , we have

SSTotal /σ
2
ε ∼ χ2

N−1

SSTreatment /σ
2
ε ∼ χ2

K−1

SSError /σ
2
ε ∼ χ2

N−K .

Also define

MSTreatment = SSTreatment /(K − 1)

MSError = SSError /(N − K ).

Exercise: Show that

Ftest =
1

K − 1

K∑
i=1

(
Ȳi. − Ȳ..
σ̂ε/
√
ni

)2

=
MSTreatment

MSError
.
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Analysis of Variance (ANOVA)

Exercise:

−4 −2 0 2 4 6 8 10

(A)

−4 −2 0 2 4 6 8 10

(B)

−4 −2 0 2 4 6 8 10

(C)

−4 −2 0 2 4 6 8 10

(D)

i) Largest Ftest? ii) Smallest? iii) Two with larger MSTreatment? iv) Larger MSError?
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Analysis of Variance (ANOVA)

The ANOVA table is a table presenting all of these values:

Source Sum of Sq df Mean Sq F p-value
Treatment SSTreatment K − 1 MSTreatment Ftest P(F > Ftest)
Error SSError N − K MSError where F ∼ FK−1,N−K
Total SSTotal N − 1

Exercise: Get the ANOVA table for the steaks data using lm() and anova().
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Analysis of Variance (ANOVA)

# read in the data and format it for ANOVA:

bacteria <- c(7.66,6.98,7.80,
5.26,5.44,5.80,
7.41,7.33,7.04,
3.51,2.91,3.66)

packaging <- c(rep("Commercial",3),
rep("Vacuum",3),
rep("Mixed Gas",3),
rep("C02",3))

packaging <- as.factor(packaging)

# estimate model with lm() function and retrieve ANOVA table:

model <- lm(bacteria ~ packaging)
anova(model)
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Checking assumptions of the cell-means model

Consider the assumptions of the model

Yij = µi + εij , j = 1, . . . , ni , i = 1, . . . ,K ,

where {εij : j = 1, . . . , ni , i = 1, . . . ,K} ind∼ Normal(0, σ2
ε).

(A.1) The responses are Normally distributed around the treatment means.

To check: Look at a QQ plot of the residuals.

(A.2) The responses have the same variance in all treatment groups.

To check: Look at the residuals versus fitted values plot.

(A.3) The responses are independent from each other.

Cannot check: Trust the random assignment of EUs to treatments.

Use plot() on the output of lm().

Exercise: Check the diagnostic plots for the steaks example.
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Checking assumptions of the cell-means model

R. O. Kuehl.
Design of Experiments: Statistical Principles of Research Design and Analysis.

Duxbury/Thomson Learning, 2000.
Google-Books-ID: mIV2QgAACAAJ.
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