STAT 515 fa 2023 Lec 17 slides

Comparative experiments and analysis of variance

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.

Comparative experiments randomly assign subjects to different treatments.

Observational studies compare subjects existing in different circumstances.

Exercise: Experimental or observational?

Randomly assign plant clones to different drought conditions and measure CO₂ uptake.

- Compare performance in school of children from different backgrounds.
- 3 Randomly assign tracts of a field to different fertilizers and compare yields.
- Ompare recycling habits of college students in Greenville and Columbia.

1:R

Observational studies are beset with the problem of confounding variables.

Confounding variable: An unrecorded property/circumstance associated with the outcome of interest as well as with a property/circumstance measured in the study.

Example: Family income and grades in school of children.

Is hours watching TV a confounding variable?

- Is hours watching TV associated with grades in school?
- Is hours watching TV associated with family income?

If yes to both, hours watching TV would be a confounder if ignored in the study.

The random assignment in comparative experiments breaks associations between measured and unmeasured variables, eliminating the problem of confounding variables.

Observational studies cannot establish causation—only association.

Comparative experiments can establish causation.

Vocabulary for comparative experiments

- Treatment: A condition imposed by the investigator.
- Experimental unit (EU): Each subject in the study—person, animal, etc.
- Response: Outcome measured on each EU after treatment applied.

Example: How to package a steak? Twelve steaks assigned to four different packagings (three to each) and bacteria per cm² recorded after nine days [1].

Steak	Packaging	log(# bact/cm ²)	Steak	Packaging	log(# bact/cm ²)
1	Commercial	7.66	10	Mixed Gas	7.41
6	Commercial	6.98 7.48	9	Mixed Gas	7.33
7	Commercial Commercial	7.80	2	Mixed Gas	7.04
12	Vacuum	5.26	8	CO_2	3.51
5	Vacuum	5.44	4	CO ₂	2.91
3	V <mark>acuu</mark> m	5.80 / 5.50	11	CO ₂	3.66
3	Vacuum	5.80 5.30	11	CO_2	3.66

Example (cont): Here are the treatment means. How can we compare them?

Packaging	mean of log(# l	pact/cm ²)
Commercial	7.48	$\bar{Y}_{1.} = \frac{1}{3} (Y_{11} + Y_{12} + Y_{13})$
Vaccuum	5.50	Y ₂ .
Mixed Gas	7.26	Ÿ3.
CO_2	3.36	F4.

$$K = 4$$
 $n_1 = 3$
 $n_2 = 3$
 $n_3 = 3$
 $n_4 = 3$

$$7.48 = \frac{1}{3} \left(Y_{11} + Y_{12} + Y_{13} \right) = \overline{Y}_{1}.$$

$$5.50 = \frac{1}{3} \left(Y_{21} + Y_{22} + Y_{23} \right) = \overline{Y}_{2}.$$

$$7.26 = \overline{Y}_{3}.$$

$$3.36 = \overline{Y}_{4}.$$

Steak	Packaging	log(<u>#_bact</u> /cm²)	Steak	Packaging	log(# bact/cr
1 (Commercial	7.66	10	Mixed Gas	4.26 7.41
6	Commercial	Y12 7 6.98 9.48	9	Mixed Gas	Y22 - 7.33
7	Commercial	Y13 \$ 7.80	2	Mixed Gas	7.04
12	Vacuum	Y21 = 5.26	8	CO_2	Y41, - 3.51
5	Vacuum	Y22 2 5.44	4	CO_2	Ym (2.91)
3	Vacuum	y ₂₃ 5.80 5.50	11	CO_2	y 23.66
		175			193
		7			

Let

- K be the number of treatments.
- n_1, \ldots, n_K be the numbers of EUs assigned to the treatments. $n_1 = 3, \ldots, n_K = 3$
- $N = n_1 + ... n_K$ be the total number of EUs. N = 12
- Y_{ij} , $j = 1, ..., n_i$, i = 1, ..., K be response for EU j in treatment group i.

Cell-means or one-way ANOVA model

Assume

$$Y_{ij} = \underbrace{\mu_i}_{\varepsilon_{ij}} + \underbrace{\varepsilon_{ij}}_{\varepsilon_{ij}}, \quad j = 1, \dots, n_i, \quad i = 1, \dots, K,$$

$$\underbrace{L_{accounts}}_{substitute} + \underbrace{L_{accounts}}_{substitute} + \underbrace{L_{accou$$

where

- μ_1, \ldots, μ_K are the population means for treatments $1, \ldots, K$.
- $\{\varepsilon_{ij}: j=1,\ldots,n_i, i=1,\ldots,K\} \stackrel{\text{ind}}{\sim} \text{Normal}(0,\sigma_{\varepsilon}^2).$

Estimate μ_1, \ldots, μ_K with treatment means $\bar{Y}_{i.} = n_i^{-1} \sum_{j=1}^{n_i} Y_{ij}$, $i = 1, \ldots, K$.

Research question: Do/does any of the treatments affect the response?

Central hypotheses in cell means model

 H_0 : $\mu_1 = \cdots = \mu_K$ (The treatments have an effect) H_1 : $\mu_i \neq \mu_{i'}$ for some $i \neq i'$, i.e. not all treatment means are equal

To build a test statistic, we look at the spread of $\overline{Y}_1, \ldots, \overline{Y}_K$.

Estimate overall mean with $\bar{Y}_{..} = N^{-1} \sum_{i=1}^K \sum_{j=1}^{n_i} Y_{ij}$.

 \$\bar{\gamma_1}\$.
 \$\bar{\gamma_2}\$.
 \$\bar{\gamma_3}\$.
 \$\bar{\gamma_4}\$

Under Ho: «Il deta come from

1 songle distributiva.

Then there is only one
men meterd of K

different mens.

A preliminary test statistic

Under the cell means model, under H_0 : $\mu_1 = \cdots = \mu_K$, we have

$$\sum_{i=1}^{K} \left(\frac{\bar{Y}_{i.} - \bar{Y}_{..}}{\sigma_{\varepsilon} / \sqrt{n_i}} \right)^2 \sim \chi_{K-1}^2.$$

A _____(larger/smaller) value of this casts _____(more/less) doubt on H_0 .

Note that σ_{ε}^2 is unknown, so we cannot compute this.

With the residuals $\hat{\varepsilon}_{ij} = Y_{ij} - \bar{Y}_{i.}$, $j = 1, ..., n_i$, i = 1, ..., K, use estimator

$$\hat{\sigma}_{\varepsilon}^2 = \frac{1}{N - K} \sum_{i=1}^K \sum_{j=1}^{n_i} \hat{\varepsilon}_{ij}^2.$$

Example (cont): This table includes the residuals from the steak experiment.

We get

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{12 - 4} \left[(0.18)^{2} + (-0.50)^{2} + \dots + (0.30)^{2} \right] = \underbrace{0.11585}_{0.11585}.$$

In the above, $F_{K-1,N-K}$ denotes the F-distribution with numerator df K-1 and denominator df N-K (next slide).

Test H_0 : $\mu_1 = \cdots = \mu_K$ versus alternative at significance level α with criterion

Reject
$$H_0$$
 if $F_{\text{test}} > F_{K-1,N-K,\alpha}$.

The *p*-value is $P(F > F_{\text{test}})$, where $F \sim F_{K-1}, N-K$.

The *F*-distributions

The *F*-distribution with num. df $\nu_1 > 0$ and den. df $\nu_2 > 0$ has pdf given by

$$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} x^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}x\right)^{-\frac{\nu_1 + \nu_2}{2}}, \quad x > 0.$$

We write $X \sim F_{\nu_1,\nu_2}$.

F-distributed rv as ratio of chi-squared rvs

If $W_1 \sim \chi^2_{\nu_1}$ and $W_2 \sim \chi^2_{\nu_2}$ are independent, then

$$rac{W_1/
u_1}{W_2/
u_2} \sim F_{
u_1,
u_2}.$$

Can use function qf() to look up the values, e.g.

$$F_{3,8,0.05} = qf(.95,3,8) = 4.066181$$

$$F_{3,8,0.01} = qf(.99,3,8) = 7.590992$$

Can get area under the curve to the left with the pf() function.

Exercise: Compute the test statistic F_{test} for the steak data and consider

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$ vs H_1 : Not all means equal.

- ① State whether you reject H_0 at the $\alpha = 0.05$ significance level.
- Compute the p-value.

Analysis of variance (ANOVA): Decomposition of the variability in Y_{ij} into

- Between-treatment variation: Variability due to treatment effects.
- Within-treatment variation: Variability due to differences among EUs.

$$SS_{\mathsf{Total}} = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \underline{Y}_{..})^2 \qquad \text{(Total variation)}$$

$$SS_{\mathsf{Treatment}} = \sum_{i=1}^{K} n_i (\overline{Y}_{i.} - \overline{Y}_{..})^2 \qquad \text{(Between-treatment)}$$

$$SS_{\mathsf{Error}} = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2 \qquad \text{(Within-treatment)}$$

We have

Sampling distributions of scaled sums of squares

Under the cell means model under H_0 : $\mu_1 = \cdots = \mu_K$, we have

$$\begin{split} \mathsf{SS}_{\mathsf{Total}} / \sigma_{\varepsilon}^2 &\sim \chi_{N-1}^2 \\ \mathsf{SS}_{\mathsf{Treatment}} / \sigma_{\varepsilon}^2 &\sim \chi_{K-1}^2 \\ \mathsf{SS}_{\mathsf{Error}} / \sigma_{\varepsilon}^2 &\sim \chi_{N-K}^2. \end{split}$$

Also define

Exercise: Show that

$$F_{\text{test}} = \frac{1}{K-1} \sum_{i=1}^{K} \left(\frac{\bar{Y}_{i.} - \bar{Y}_{..}}{\hat{\sigma}_{\varepsilon} / \sqrt{n_{i}}} \right)^{2} = \frac{\text{MS}_{\text{Treatment}}}{\text{MS}_{\text{Error}}}.$$

i) Largest F_{test} ? ii) Smallest? iii) Two with larger $MS_{\text{Treatment}}$? iv) Larger MS_{Error} ?

The ANOVA table is a table presenting all of these values:

Source	Sum of Sq		Mean Sq		p-crue
Treatment	SS _{Treatment}	K-1	MS _{Treatment}	F_{test}	$P(F > F_{\text{test}})$
Error	SS _{Error}	N-K	MS _{Error}		where $F > F_{K-1,N-K}$
Total	SS _{Total}	N-1			
				'	
CR mit then					

Exercise: Get the ANOVA table for the steaks data using lm() and anova().

```
# read in the data and format it for ANOVA:
bacteria <- c(7.66,6.98,7.80,
               5.26,5.44,5.80,
               7.41,7.33,7.04,
               3.51, 2.91, 3.66)
packaging <- c(rep("Commercial",3),</pre>
                rep("Vacuum",3),
                rep("Mixed Gas",3),
                rep("C02",3))
packaging <- as.factor(packaging)</pre>
# estimate model with lm() function and retrieve ANOVA table:
model <- lm(bacteria ~ packaging)</pre>
anova(model)
```

Consider the assumptions of the model

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, K,$$

where $\{\varepsilon_{ij}: j=1,\ldots,n_i, i=1,\ldots,K\} \stackrel{\mathsf{ind}}{\sim} \mathsf{Normal}(0,\sigma_{\varepsilon}^2).$

(A.1) The responses are Normally distributed around the treatment means.

To check: Look at a QQ plot of the residuals.

(A.2) The responses have the same variance in all treatment groups.

To check: Look at the residuals versus fitted values plot.

(A.3) The responses are independent from each other.

Cannot check: Trust the random assignment of EUs to treatments.

Use plot() on the output of lm().

Exercise: Check the diagnostic plots for the steaks example.

R. O. Kuehl.

Design of Experiments: Statistical Principles of Research Design and Analysis.

Duxbury/Thomson Learning, 2000. Google-Books-ID: mIV2QgAACAAJ.