
STAT 515 fa 2023 Lec 18

Simple Linear Regression

Karl Gregory

Studying the relationship between two variables

You have likely seen many plots like the one below, in which the values of one variable are
plotted against the values of another. This is called a scatterplot. The data to make the plot
are pairs of numbers (x1, Y1), . . . , (xn, Yn). For this plot the x values were temperatures of
stars and the Y values were the natural log of the beryllium abundance in the corresponding
stars. The data are taken from [1].
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Plots like these can be helpful for depicting the relationship between two random variables
X and Y . In addition, they can help researchers make predictions; for example, there is no
star in the data set with temperature exactly 5200, but based if one were to draw a straight

1



line through the points in the scatterplot, one could use the height of the line at x = 5200
to make a reasonable guess about the log of beryllium abundance in such a star.

In this lecture we will introduce what is called the correlation coefficient, which describes the
strength and direction of a linear relationship between random variables, and then introduce
simple linear regression analysis. The latter is a way to draw “the best” straight line through
the data and to make statistical inferences—conclusions to which we can attach levels of
confidence—about the linear relationship between the variables X and Y .

Pearson’s correlation coefficient

When we suspect that two variables might be linearly related (related in such a way that
one could draw a straight line through a scatterplot of their values), we often compute what
is called Pearson’s correlation coefficient, which we will denote by rxY . This is a measure
describing the strength and direction of a linear relationship between two variables.

Definition: Pearson’s correlation coefficient

For data pairs (x1, Y1), . . . , (xn, Yn), Pearson’s correlation coefficient is defined as

rxY =

∑n
i=1(xi − x̄n)(Yi − Ȳn)√∑n

i=1(xi − x̄n)2
∑n

i=1(Yi − Ȳn)2
.

It may not be clear from the formula for rxY what this quantity is supposed to tell us. One
fact about this value, however, which is also not immediately clear from the formula, is that
rxY cannot take a value outside the interval [−1, 1]. Let’s put this fact in a big box:

Result: Possible values for Pearson’s correlation coefficient

Pearson’s correlation coefficient rxY must take a value in [−1, 1].

Back to looking at the formula: If we look for a moment at the numerator of rxY , we see
that if xi and Yi tend at the same time to exceed their respective means x̄n and Ȳn and tend
at the same time to fall below their respective means, the correlation coefficient should take
a positive value. However, if xi tends to be below its mean while Yi is above its mean and
above its mean when Yi is below its mean, then rxY will probably take a negative value. If
xi and Yi tend to fall above and below their respective means without regard to one another,
then rxY does not know whether to be positive or negative and so takes a value close to zero.

The plot below shows a few scatterplots along with the value of Pearson’s correlation coef-
ficient computed on the data.
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We may notice a few things:

1. The value of rxY is close to zero when the relationship is weak (middle panel.

2. The value of rxY is close to zero when the relationship is nonlinear (two rightmost
panels).

3. The value of rxY is positive when the scatterplot slopes upward (two leftmost panels).

4. The value of rxY is negative when the scatterplot slopes upward (two leftmost panels).

5. the value of rxY is greater in magnitude the more closely the points are scattered
around a straight line (three leftmost panels).

As a summary, we may say that Pearson’s correlation coefficient describes the strength and
direction of linear relationships. Very strong non-linear relationships, like the ones in the
two rightmost panels of the plot, do not correspond to large values of Pearson’s correlation
coefficient. Therefore, the quantity rxY is only appropriate for describing linear relationships.
If a scatterplot suggests a non-linear relationship—if you cannot draw a straight line through
the data points—then it is not appropriate to use Pearson’s correlation coefficient to describe
the relationship.

In statistics, the word “correlation” almost always means Pearson’s correlation, so a statis-
tician would never say something like “what you are saying is correlated with what so and
so is saying.” A statistician will not use the word “correlated” unless it is to describe the
strength and direction of the linear relationship between two variables.

The following code generates some data (x1, Y1), . . . , (xn, Yn) and computes Pearson’s corre-
lation coefficient between x and Y .

n <- 100

X <- runif(n,0,10)

Y <- X + rnorm(n)

cor(X,Y)
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Simple linear regression

The simple linear regression model is a mathematical description of how Y is related to X.
For data (x1, Y1), . . . , (xn, Yn) it assumes

Yi = β0 + β1xi + εi

for i = 1, . . . , n, where

• x1, . . . , xn are fixed real numbers

• Y1, . . . , Yn are independent random variables

• β0 and β1 are unknown constants called regression coefficients

• ε1, . . . , εn are iid errors with Eεi = 0 and Var εi = σ2 for i = 1, . . . , n.

The model states that for the value xi, the value of Yi will be equal to the height of the
line β0 + β1xi plus or minus some random amount. This random amount is often called an
error, but there is nothing really erroneous going on; we just don’t expect all the Y values
to fall exactly on the line β0 + β1x, so we allow them to be different by the amount ε, and
we assume that the average of many values of ε will be zero. All of this means we expect
the Y values to bounce more or less around the line, falling above and below it at random.

Having written down the linear regression model, the next task for the statistician is to use
the data to estimate the unknown quantities involved. There are three: The parameters β0
and β1 giving the intercept and slope of the line, and the parameter σ2 giving the variance
of the error terms.

We first focus on estimating β0 and β1. Reasonable guesses at the values of β0 and β1 might
be obtained by drawing, with a ruler, a line through the scatterplot which runs as much as
possible through the center of the points. Although this may give reasonable results, two
different people might draw two different lines, and it would hardly possible to analyze the
statistical properties of such a line. We would like to have a way of drawing the line such
that we can depend on its on-average being the right one, or in the sense that if we collected
more and more data our method of line-drawing would eventually lead us to the true line
governing the true relationship between Y and x. To this end, we will introduce a criterion
for judging the quality of any line drawn through the points and use calculus to find the
slope and intercept values which produce the best possible line—according to the criterion.

The most commonly used criterion for judging the quality of straight lines drawn through
scatterplots is called the least-squares criterion. It is equal to the sum of squared vertical
distances between the data points on the scatterplot and the line drawn. If the line a+ bx is
drawn, for some slope b and intercept a, the least squares criterion is the sum of Yi−(a+bxi),
i = 1, . . . , n. Under this criterion, one can find the best choices of a and b. We present the
result in the next box:
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Result: Least squares estimators of regression coefficients

Provided
∑n

i=1(xi − x̄n)2 > 0, the function

Qn(β0, β1) :=
n∑
i=1

[Yi − (β0 + β1xi)]
2

is (uniquely) minimized at

β̂0 = Ȳn − β̂1x̄n

β̂1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
= rxY ·

sY
sx
,

where s2Y = (n− 1)−1
∑n

i=1(Yi − Ȳn)2 and s2x = (n− 1)−1
∑n

i=1(xi − x̄n)2.

So, to compute the least-squares estimators of the regression coefficients β0 and β1, one first
obtains the slope as β̂1 = rxY sY /sx and then the intercept as β̂0 = Ȳn − β̂1x̄n.

Example. We can plot the beryllium data and overlay the least-squares regression line using
the following R code:

# load the data

load(url("https://people.stat.sc.edu/gregorkb/data/beryllium.Rdata"))

# pull x and Y from the beryllium data frame

x <- beryllium$Teff

Y <- beryllium$logN_Be

# compute the least-squares regression coefficients

x_bar <- mean(x)

b1 <- cor(x,Y) * sd(Y) / sd(x)

b0 <- mean(Y) - b1*x_bar

# make a scatterplot with the least-squares line overlaid

plot(Y ~ x , xlab="Teff", ylab = "logBe")

abline(b0,b1)

The above code produces the plot
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Statistical inference in simple linear regression

It is nice to be able to draw the best line through a scatterplot of points. We know that the
least-squares line is, of any line we could possibly draw, the one that minimizes the sum of
the squared vertical distances between the points and itself.

Remember the whole idea behind statistics, though? If we were to collect another data set
studying the same phenomenon, we would get different data; so what can we learn from this
one single data set? The line we drew through the scatterplot is really a “guess” at where
the true line would be. If we could go on collecting data on all the stars in the universe,
we could then draw the “true” or “population” level line. But we only have the data in our
sample.

So what can we learn from it?

As we have done before with population means and variances and proportions, we will
formulate some hypotheses about the true best line underneath the data and use the least-
squares line to test those hypotheses. Fundamentally, we are interested in knowing whether
there exists a linear relation between our X and our Y variable. The true best line is specified
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by the unknown values of β0 and β1. Of these parameters, it is β1 which carries information
about the relationship between X and Y . We therefore concetrate on making statistical
inferences about β1; that is, we try to learn what we can about β1 from the data.

What we can learn about β1 from the data depends on the behavior of out estimator β̂1–
specifically how far away from the true β1 we should expect it to be. This information is
contained in the sampling distribution of β̂1, which we shall present after giving names to
some important quantities that arise after we draw the least-squares line.

Definition: Fitted values, residuals

Let β̂0 and β̂1 be the least-squares estimators of β0 and β1. Then the values

Ŷi = β̂0 + β̂1xi, i = 1, . . . , n

are called the fitted values, and the values

ε̂i = Yi − Ŷi, i = 1, . . . , n

are called the residuals.

Having defined the fitted values and the residuals, we may present an estimator for the other
unknown quantity in the linear regression model, which is the error term variance σ2. We
are going to have to take a guess at what this value is in order to make any inferences about
β1 based on the data, and the estimator defined next is the best guess we can make (“best”
according to some criteria that are beyond the scope of this course!).

Definition: Estimator of the error term variance

An unbiased estimator of the error term variance σ2 is given by

σ̂2 =
1

n− 2

n∑
i=1

ε̂2i .

The word “unbiased” means Eσ̂2 = σ2, so that the sampling distribution of the estimator
σ̂2 is centered in a nice way around the value it is trying to estimate.

Now we present a result about the sampling distribution of β̂1:
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Result: Sampling distribution of β̂1

Provided ε1, . . . , εn
ind∼ Normal(0, σ2), we have

β̂1 ∼ Normal(β1, σ
2/Sxx) and (n− 2)σ̂2/σ2 ∼ χ2

n−2,

where S2
xx =

∑n
i=1(xi − x̄n)2, from which we have

β̂1 − β1
σ̂/
√
Sxx
∼ tn−2.

We can use the above to construct a (1− α)× 100% confidence interval for β1.

Result: Confidence interval for β1

If ε1, . . . , εn
ind∼ Normal(0, σ2), a (1− α)× 100% confidence interval for β1 is given by

β̂1 ± tn−2,α/2σ̂/
√
Sxx.

Example. Continuing the example with the beryllium data, we can build a 95% confidence
interval for β1 with the following code:

n <- length(Y)

Sxx <- sum((x - x_bar)^2)

sigma.hat <- sqrt( sum(e_hat^2)/(n-2))

lo <- b1 - qt(.975,n-2) * sigma.hat / sqrt(Sxx)

up <- b1 + qt(.975,n-2) * sigma.hat / sqrt(Sxx)

The confidence interval is (0.00047, 0.00071).

We can also use the confint() function on the output of the lm() function, like this:

confint(lm(Y ~ x))

It will print a confidence interval for β0 as well as β1.

Assumptions of simple linear regression

Implicit in the setup of the simple linear regression model are the assumptions listed here:
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Assumption: Assumptions of simple linear regression

(A.1) The responses are Normally distributed around the regression line.

To check: Look at a QQ plot of the residuals.

(A.2) The responses have the same variance for all values of the covariate.

To check: Look at the residuals versus fitted values plot.

(A.3) The covariate and the response are linearly related.

To check: Look at the residuals versus fitted values plot.

(A.4) The responses are independent from each other.

Cannot check: Trust the experimental design/beyond scope of course.

I haven’t quite finished typing the rest of this note. See the lecture slides!!
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