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Association between categorical variables

Consider two categorical random variables U and V having categorical “values” u1, . . . , uJ
and v1, . . . , vK . Our goal will be to test whether U and V are associated with each other.

Example. This is taken from Example 13.3 of [1]. Suppose V is the religious affiliation of
a randomly sampled male from the United States, and suppose it can take the values

v1 = affiliation 1
v2 = affiliation 2
v3 = affiliation 3
v4 = affiliation 4
v5 = none

In addition, suppose U is the divorce status of a randomly sampled male from the United
States, and suppose it can take the values

u1 = divorced
u2 = married or never divorced

A random sample of 500 males from the United States resulted in the following table of
counts:

v1 v2 v3 v4 v5
u1 39 19 12 28 18 116
u2 172 61 44 70 37 384

211 80 56 98 55 500
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From the above table, we see that there were 39 males in the sample who were divorced and
claimed religious affiliation 1, 19 who were divorced and claimed religious affiliation 2, and
so on. The rightmost column gives the row sums; the bottom row gives the column sums.
A total of 116 males in the sample were divorced, while 384 were married or never divorced;
211 claimed religious affliation 1, 80 claimed religious affiliation 2, and so on.

The researchers who collected this data were interested in testing the hypotheses

H0: There is no association between religious affiliation and divorce status.
H1: There is an association between religious affiliation and divorce status.

Formulating the hypothesis of “no association”

We would like to formulate hypotheses like the one in the divorce status and religious af-
filiation study more precisely. What do we mean by “no association”? In general, for our
categorical variables U and V taking the values u1, . . . , uJ and v1, . . . , vK , respectively, we
will consider testing the following set of hypotheses:

H0: P (U = uj ∩ V = vk) = P (U = uj)P (V = vk) for all j = 1, . . . , J and k = 1, . . . , K.
H1: P (U = uj ∩ V = vk) 6= P (U = uj)P (V = vk) for at least one j, k.

Recall that P (U = uj ∩ V = vk) = P (U = uj)P (V = vk) means that the events {U = uj}
and {V = vk} are independent, so the null hypothesis above states that the categorical
variables U and V are independent, while the alternate hypothesis states that there is some
dependence between U and V .

We will now define some notation which will allow us to work towards developing a test
statistic for testing the hypothesis of no association versus association. Define

pjk = P (U = uj ∩ V = vk) as the joint probability of {U = uj ∩ V = vk},

pj. = P (U = uj) =
K∑
k=1

pjk as the marginal probability of {U = uj}, and

p.k = P (V = vk) =
J∑
j=1

pjk as the marginal probability of {V = vk}.

Now consider the following table of joint and marginal probabilities:

v1 v2 . . . vK
u1 p11 p12 . . . p1K p1.
u2 p21 p22 . . . p2K p2.
...

...
...

. . .
...

...
uJ pJ1 pJ2 . . . pJK pJ.

p.1 p.2 . . . p.K 1
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This table displays what is called the joint probability distribution of the categorical random
variables U and V as well as the marginal probability distributions of U and V . The joint
probability distribution of U and V is given by the probabilities in the J ×K interior of the
table. The marginal probability distribution of V is given by the probabilities in the bottom
row of the table and that of U is given by the probabilities in the rightmost column of the
table—that is, the marginal distributions are given by the probabilities in the margins of
the table. The 1 appearing in the bottom right cell is the sum of all the probabilities in the
interior of the table, or equivalently the sum of the row sums or the sum of the column sums.

The null hypothesis of no association—that is, independence—between U and V specifies
that the joint probability distribution of U and V is given by

v1 v2 . . . vK
u1 p1.p.1 p1.p.2 . . . p1.p.K p1.
u2 p2.p.1 p2.p.2 . . . p2.p.K p2.
...

...
...

. . .
...

...
uJ pJ.p.1 pJ.p.2 . . . pJ.p.K pJ.

p.1 p.2 . . . p.K 1

(1)

so that each joint probability is equal to the product of the corresponding marginal proba-
bilities.

Constructing a test statistic

As we have done in other contexts, we will measure how much evidence the data carry against
H0 by computing a test statistic from which we may obtain a p-value.

Suppose we draw a sample and record the following counts:

njk = #{U = uj ∩ V = vk} = number of subjects with jth value of U and kth value of V

nj. = #{U = uj} =
K∑
k=1

njk = number of subjects with jth value of U

n.k = #{V = vk} =
J∑
j=1

njk = number of subjects with kth value of V

n.. =
J∑
j=1

K∑
k=1

njk = total number of subjects

We typically present the data in a table like this one, which is often called a contingency
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table:
v1 v2 . . . vK

u1 n11 n12 . . . n1K n1.

u2 n21 n22 . . . n2K n2.
...

...
...

. . .
...

...
uJ nJ1 nJ2 . . . nJK nJ.

n.1 n.2 . . . n.K n..

(2)

Define

p̂jk = njk/n.. = proportion of subjects with jth value of U and kth value of V

p̂j. = nj./n.. = proportion of subjects with jth value of U

p̂.k = n.k/n.. = proportion of subjects with kth value of V .

Then dividing each entry in the contingency table in (2) by n.. results in the table

v1 v2 . . . vK
u1 p̂11 p̂12 . . . p̂1K p̂1.
u2 p̂21 p̂22 . . . p̂2K p̂2.
...

...
...

. . .
...

...
uJ p̂J1 p̂J2 . . . p̂JK p̂J.

p̂.1 p̂.2 . . . p̂.K 1

(3)

This table gives an estimate of the joint probability distribution of U and V based on the
data.

Now, if H0 were true, that is if U and V were independent, we would estimate the joint proba-
bility distribution of U and V by using the products of marginal probabilities, corresponding
to the table in (1), so that the estimator under H0 of the joint probability distribution of U
and V based on the data would be

v1 v2 . . . vK
u1 p̂1.p̂.1 p̂1.p̂.2 . . . p̂1.p̂.K p̂1.
u2 p̂2.p̂.1 p̂2.p̂.2 . . . p̂2.p̂.K p̂2.
...

...
...

. . .
...

...
uJ p̂J.p̂.1 p̂J.p̂.2 . . . p̂J.p̂.K p̂J.

p̂.1 p̂.2 . . . p̂.K 1

(4)

If we multiply the entries of the table in (4) by n.., we get a table with the counts we would
have expected to obtain if the null hypothesis were true—that is if U and V were independent.
We have

n..p̂j.p̂.k = n..

(
nj.
n..

)(
n.k
n..

)
= nj.n.k/n.. for j = 1, . . . , J, and k = 1, . . . , K,
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so multiplying the table in (4) by n.. results in the table

v1 v2 . . . vK
u1 n1.n.2/n.. n1.n.2/n.. . . . n1.n.K/n.. n1.

u2 n2.n.1/n.. n2.n.2/n.. . . . n2.n.K/n.. n2.
...

...
...

. . .
...

...
uJ nJ.n.1/n.. nJ.n.2/n.. . . . nJ.n.K/n.. nJ.

n.1 n.2 . . . n.K 1

(5)

We will construct a test statistic which compares the observed counts with the expected
counts under H0. That is, we will measure the difference between the interiors of the tables
in (2) and (5), which are

n11 n12 . . . n1K

n21 n22 . . . n2K
...

...
. . .

...
nJ1 nJ2 . . . nJK

and

n1.n.2/n.. n1.n.2/n.. . . . n1.n.K/n..
n2.n.1/n.. n2.n.2/n.. . . . n2.n.K/n..

...
...

. . .
...

nJ.n.1/n.. nJ.n.2/n.. . . . nJ.n.K/n..

(6)

The more these tables differ from each other, the more doubt is cast on H0. The more similar
these tables are to each other, the less evidence there is against H0.

There are several ways in which we could compare the values in these two tables, but we will
discuss the measure of comparison proposed by Karl Pearson, of whom a portrait is shown
in Figure 1.

Figure 1: Karl Pearson (1857) – (1936)

Letting

Ojk = njk and Ejk = nj.n.k/n.., for j = 1, . . . , J and k = 1, . . . , K
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denote the observed counts and the expected counts under H0 from the tables in (6), Karl
Pearson proposed using as a test statistic for H0 the quantity

Wtest =
J∑
j=1

K∑
k=1

(Ojk − Ejk)2/Ejk.

Larger values of the test statistic Wtest indicate a greater difference between the observed
counts and the counts expected under H0, so that larger values of Karl Pearson’s test statistic
cast greater doubt on H0.

Under H0, the distribution of the quantity Wtest, as long as the sample size is large enough,
is well approximated by the χ2

(J−1)(K−1) distribution. Therefore, if the sample size is large
enough, our decision rule for rejecting H0 is

Reject H0 at significance level α if Wtest > χ2
(J−1)(K−1),α,

where χ2
(J−1)(K−1),α denotes the upper α-quantile of the chi-squared distribution with degrees

of freedom (J − 1)(K − 1).

We often refer to the test statistic Wtest as Pearson’s chi-squared statistic and we refer to
the test based on it as Pearson’s chi-squared test. The following rule of thumb tells us how
to judge whether the sample size is large enough for the test to be reliable.

Rule of thumb 1. If
min
j,k

Ejk ≥ 5

then we may assume that the distribution ofWtest, under the null hypothesis of no association,
is well approximated by the χ2

(J−1)(K−1) distribution.

Example. Returning to the study of divorce status and religious affiliation, the table of
expected counts under H0 is given by

v1 v2 v3 v4 v5
u1 48.952 18.56 12.992 22.736 12.76 116
u2 162.048 61.44 43.008 75.264 42.24 384

211 80 56 98 55 500

where

48.952 =
211(116)

500
, 18.56 =

80(116)

500
, . . . 42.24 =

55(384)

500
,

and Pearson’s chi-squared statistic is computed as

Wtest =
(39− 48.952)2

48.952
+

(19− 18.56)2

18.56
+ · · ·+ (37− 42.24)2

42.24
= 7.1355.

If we wanted to test the hypotheses
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H0: There is no association between religious affiliation and divorce status.
H1: There is an association between religious affiliation and divorce status.

at significance level α = 0.01, we would compare Wtest = 7.1355 to the upper 0.01-quantile
of the chi-squared distribution with degrees of freedom (5− 1)(2− 1) = 4. We have χ2

4,0.01 =
qchisq(.99,4) = 13.2767. Since 7.1355 < 13.2767, we fail to reject the null hypothesis of
no association between divorce status and religious affiliation. Therefore, we say that there is
insufficient evidence to say that there is an association between divorce status and religious
affiliation.

We let R do these computations for us. The following R code reads the observed counts
into a matrix and uses the chisq.test() function to compute Pearson’s chi-squared test
statistic and to obtain the p-value:

> data <- matrix(c(39,19,12,28,18,172,61,44,70,37),nrow=2,byrow=TRUE)

> data

[,1] [,2] [,3] [,4] [,5]

[1,] 39 19 12 28 18

[2,] 172 61 44 70 37

> chisq.test(data)

Pearson’s Chi-squared test

data: data

X-squared = 7.1355, df = 4, p-value = 0.1289

Note that the p-value is the area under the pdf of the χ2
4-distribution to the right of the test

statistic value 7.1355. We could compute this p-value using the pchisq function by

1-pchisq(7.1355,4) = 0.1288986.

In order to retrieve the table of expected counts from the chisq.test() function in order
to check whether all the expected counts are greater than or equal to 5, we can use the
command

> chisq.test(data)$expected

[,1] [,2] [,3] [,4] [,5]

[1,] 48.952 18.56 12.992 22.736 12.76

[2,] 162.048 61.44 43.008 75.264 42.24

We see that all the expected counts under H0 are greater than or equal to 5, so the sample
size can be regarded as large enough for Pearson’s chi-squared test to be reliable.
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The case of fixed marginal counts

It is very often the case that the investigator chooses not only the overall sample size n..,
but also either the row or column totals n1., . . . , nJ. or n.1 . . . , n.K , respectively. This is the
case in the following example.

Example. Suppose that in a study of gender and ice cream preferences 1,000 women and
1,200 men are asked what their favorite way to eat ice cream was. Suppose the resulting
data were

cup cone sundae sandwich other
men 592 300 204 24 80 1200

women 410 335 180 20 55 1000
1002 635 384 44 135 2200

When either the row or the column sums are fixed by the investigator, we must interpret the
data in a different way. We no longer regard the sample as having been drawn from a single
population; rather, we regard data data as having been sampled from multiple populations.
In the ice cream example, a sample of size 1,000 was drawn from the population of men and
a sample of size 1,200 was drawn from the population of women.

We may still test the hypotheses

H0: There is no association between gender and ice cream preferences.
H1: There is an association between gender and ice cream preferences.

but “no association” has a different interpretation from before. In this ice cream example,
the null hypothesis is really

H0: p
men
cup = pwomen

cup , pmen
cone = pwomen

cone , . . . , pmen
other = pwomen

other ,

where pmen
cup and pwomen

cup are the proportion of men and women, respectively, favoring ice cream
from a cup and so on.

More generally, suppose we sample from J populations and we record each draw as one of
K possible outcomes. If pjk denotes the probability of drawing outcome k from population j
then we may formulate the null and alternate hypotheses as

H0: p
1
k = p2k = · · · = pJk for all k = 1, . . . , K.

H1: The proportions are not the same in all populations.

The null hypothesis states that the probability of each outcome is the same in all J popula-
tions and the alternate hypothesis is its negation.
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Happily, our testing procedure in the case of fixed marginal counts is exactly the same
as before; we still use Pearson’s chi-squared statistic to compare the contingency table of
observed counts to the table of counts we would have expected under H0. The table of
expected counts is computed just as before.

Example. Returning to the ice cream example, we compute the table of expected counts as

cup cone sundae sandwich other
men 546.55 346.36 209.45 24 73.64 1200

women 455.45 288.64 174.55 20 61.36 1000
1002 635 384 44 135 2200

where

546.55 =
1002(1200)

2200
, 346.36 =

635(1200)

2200
, . . . , 61.36 =

135(1000)

2200
,

and we compute Pearson’s chi-squared test statistic as

Wtest =

[
(592− 546.55)2

546.55
+

(300− 346.36)2

346.36
+ · · ·+ (55− 61.36)2

61.36

]
= 23.493.

Since the dimension of the contingency table is 2×5, the chi-squared distribution with which
we define the rejection region is the chi-squared distribution with degrees of freedom equal
to (2− 1)(5− 1) = 4. To test the hypothesis of no association between gender and ice cream
preferences at significance level α = 0.05, for example, we would compare the test statistic
value Wtest = 23.493 to the upper 0.05-quantile of the χ2

4 distribution, which is 9.487729,
obtained from R with the command qchisq(.95,4). Since 23.493 > 9.487729 we reject H0

at significance level 0.05 and conclude that there is an association between gender and ice
cream preferences. In addition, the p-value associated with the test statistic Wtest = 23.493
for testing the null hypothesis of no association is equal to the area under the χ2

4 pdf to the
right of 23.493. This is given by 1-pchisq(23.493,4) = 0.0001009139.

We can use R to do all the calculations as follows:

> icecream <- matrix(c(592,300,204,24,80,410,335,180,20,55),nrow=2,byrow=TRUE)

> icecream

[,1] [,2] [,3] [,4] [,5]

[1,] 592 300 204 24 80

[2,] 410 335 180 20 55

> chisq.test(icecream)$expected

[,1] [,2] [,3] [,4] [,5]

[1,] 546.5455 346.3636 209.4545 24 73.63636

[2,] 455.4545 288.6364 174.5455 20 61.36364

> chisq.test(icecream)

9



Pearson’s Chi-squared test

data: icecream

X-squared = 23.493, df = 4, p-value = 0.0001009

The two-by-two case with fixed marginal counts

Pearson’s chi-squared test can also be used in the two-population setting. Consider the
following example.

Example. Consider testing whether a vaccine has an adverse side effect, for example ab-
dominal pain. Data from a clinical trial might be tabulated as follows:

abd. pain no abd. pain
vaccine 29 4965 4994
control 2 1376 1378

31 6341 6372

It is of interest to know whether the probability of abdominal pain is the same or different
in the vaccine and control groups.

We may formulate the hypotheses of interest as

H0: p
vaccine
abd = pcontrolabd versus H1: p

vaccine
abd 6= pcontrolabd ,

where pvaccineabd and pcontrolabd denote the probability of abdominal pain after receiving the vaccine
and the control treatment, respectively.

Following the procedure we learned previously for two-sample testing, we would compute
p̂vaccineabd = 29/4994, p̂controlabd = 2/1378, and

p̂0 = 31/6372.

Then we would compute the test statistic

Ztest =
29/4994− 2/1378√

(31/6372)(1− 31/6372)(1/4994 + 1/1378)
= 2.057188,

for which the p-value is obtained as twice the area under the standard Normal pdf to the
right of 2.057188. This is 2*(1 - pnorm(2.057188)) = 0.03966815.

Now, if we use Pearson’s chi-squared test, we get the table of expected values
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abd. pain no abd. pain
vaccine 24.295982 4969.704 4994
control 6.704018 1371.296 1378

31 6341 6372

from which we would compute Pearson’s chi-squared test statistic as

Wtest =

[
(29− 24.295982)2

24.295982
+

(4965− 4969.704)2

4969.704
+ · · ·+ (1376− 1371.296)2

1371.296

]
= 4.232.

The p-value associated with the value Wtest = 4.232 is the area under the pdf of the χ2
1

distribution (use degrees of freedom equal to 1 = (2−1)(2−1) since the table has dimension
2× 2) to the right of 4.232. We find that this is exactly 1-pchisq(4.232,1) = 0.03966867.

So the p-values obtained by the two testing procedures are the same! This is because in the
2× 2 case, we have

Wtest = Z2
test (Check that 4.232 = (2.057188)2),

and because the square of a standard Normal random variable has the chi-squared distribu-
tion with degrees of freedom equal to 1.
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