

STAT 515 Lec 04 slides

Random variables

Karl Gregory

University of South Carolina

$$\mathcal{X} = \{1, 2, \dots, 6\}$$

$$\mathcal{X} = [0, \infty)$$

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.

A random variable is a numeric encoding of the outcome of an experiment.

Random variable

A *random variable* is a function from a sample space S to the real numbers.

That is, a *random variable* X is a function $X: S \rightarrow \mathbb{R}$.

Denote by \boxed{X} the range of X , the set of values X may take.

We often call X the $\boxed{\text{support}}$ of X .

X
↑
random variable

X
↑
Support of X

"real numbers"
↑
Sample space.

Examples:

- 1 Flip a coin and let $X = 1$ if heads, $X = 0$ otherwise.
- 2 Flip a coin three times and let $X =$ the number of heads.
- 3 Count jellyfish washed up on the beach. Let $X = \#$ jellyfish.
- 4 Let $X =$ time until you drop your new phone. $X = [0, \infty)$
- 5 Let $X =$ number on up-face of rolled die. $S = \{1, 2, 3, 4, 5, 6\}$

continuous.

① $S = \{ \text{heads, tails} \}$

$$X(\text{outcome}) = \begin{cases} 1 & \text{if outcome is heads} \\ 0 & \text{if outcome is tails} \end{cases}$$

$X = \{1, \dots, 6\}$. Discrete

$$X = \begin{cases} 1 & \text{if heads} \\ 0 & \text{if tails} \end{cases}$$

Support: $X = \{0, 1\}$ Discrete

② Flip a coin three times and let $X =$ the number of heads.

$$S = \{ HHH, HHT, HTH, THT, TTH, HTT, TTT \}$$

$X = \{0, 1, 2, 3\}$ Discrete

$$X = \begin{cases} 0 & \text{if outcome is } TTT \\ 1 & \text{if outcome is } TTH, THT, HTT \\ 2 & \text{if outcome is } HHT, HTH, THH \\ 3 & \text{if outcome is } HHH \end{cases}$$

③ Count jellyfish washed up on the beach. Let $X = \#$ jellyfish.

$$S = \{0, 1, 2, \dots\}$$

$X =$ outcome

$$X = \{0, 1, 2, \dots\}$$

same

Discrete

Discrete and continuous random variables

- **Discrete:** Support \mathcal{X} is a list of numbers (finite or countably infinite)
- **Continuous:** Support \mathcal{X} is an interval (or union of intervals).

But what about *categorical data*?

- Record eye color of randomly selected student.
- Rate professor as *miserable*, *mediocre*, *middling*, or *magnificent*.

These we can encode numerically into rvs; rvs are always numbers.

Discuss nominal/ordinal.

$P(A)$

Exercise: Consider some events involving random variables:

- 1 Flip a coin and let $X = 1$ if heads, $X = 0$ otherwise. Find $P(X = 1)$?
- 2 Flip a coin three times and let $X = \#$ heads. Find $P(X = 0)$?
- 3 Let $X = \#$ jellyfish washed up on the beach. Find $P(X > 10)$?
- 4 Let $X = \text{time until you drop your new phone}$. Find $P(X \leq 1)$?
- 5 Let $X = \text{number on up-face of rolled die}$. Find $P(X \in \{3, 4\})$?

1 $P(X = 1) = \frac{1}{2}$

"in" \uparrow " $\frac{2}{6} = \frac{1}{3}$.

2 $P(X = 0) = \frac{1}{8}$

The **probability distribution** of a random variable tells

- ① **what values it can take**
- ② **with what probabilities**

X

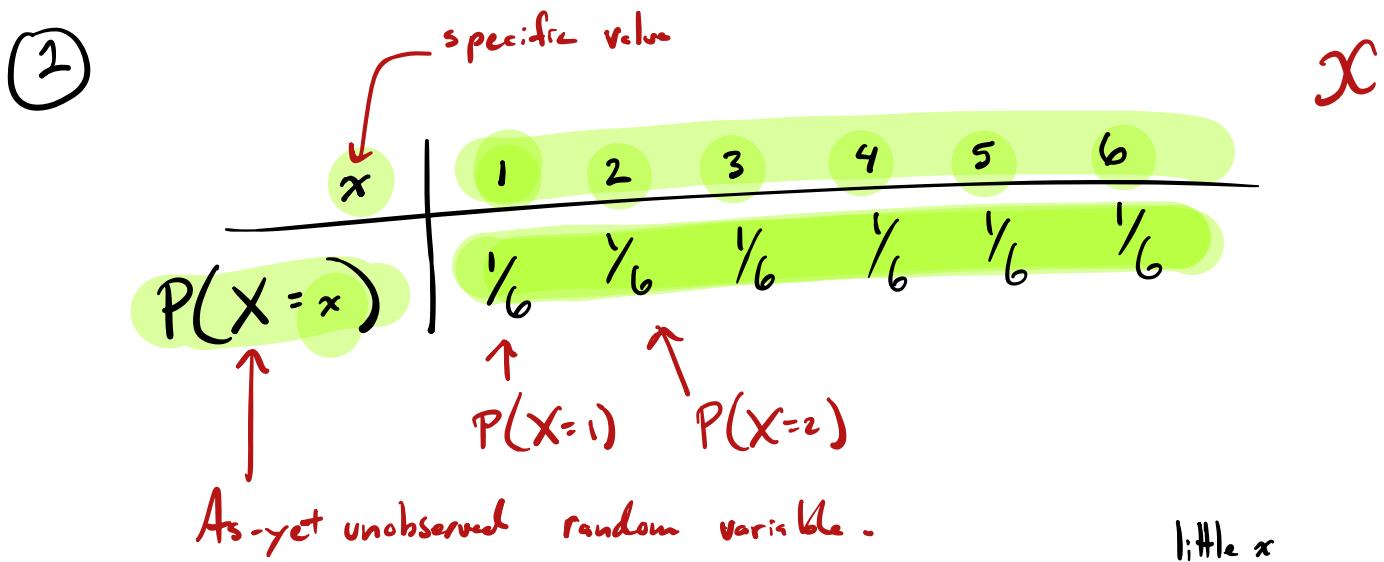
Probability distribution of a discrete random variable

The **probability distribution** of a discrete rv X with support $\mathcal{X} = \{x_1, x_2, x_3, \dots\}$ is an assignment of probabilities p_1, p_2, p_3, \dots to the values x_1, x_2, x_3, \dots such that

- $p_i \in [0, 1]$ for $i = 1, 2, \dots$
- $\sum_i p_i = 1$ (Probabilities sum to 1).

Exercise: Tabulate probability distributions of the following discrete rvs:

- 1 Roll a die and let $X = \text{number on up-face of die}$.
- 2 Flip two coins and let $X = \# \text{ heads}$.



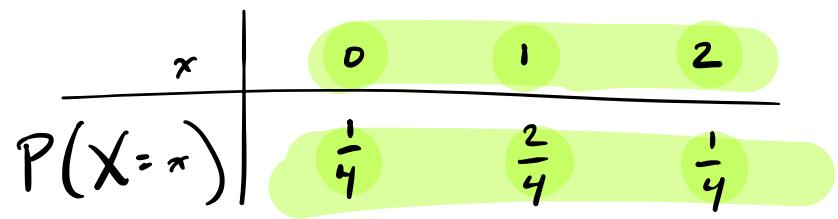
The table lists $P(X = x)$ for all $x \in \mathcal{X}$.

2 flip Two coins

$$S = \{ \text{H H}, \text{H T}, \text{T H}, \text{T T} \}$$

$$X = \begin{cases} 0 & ; f \quad TT \\ 1 & ; f \quad HT \quad TH \\ 2 & ; f \quad HH \end{cases}$$

$$\mathcal{X} = \{0, 1, 2\}$$

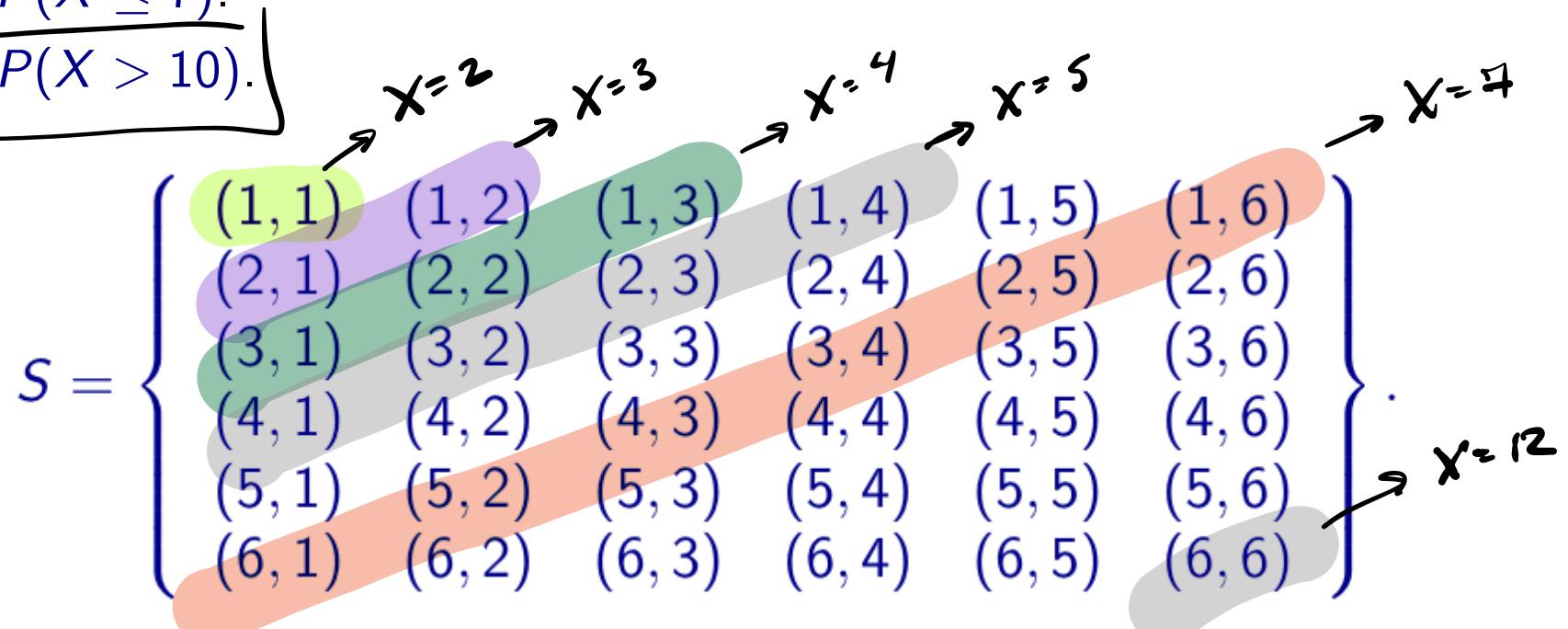


Exercise: Let X = sum of two rolls of a die.

1 Tabulate the probability distribution of X .

2 Give $P(X \leq 7)$.

3 Give $P(X > 10)$.



$$\mathcal{X} = \{2, \dots, 12\}$$

x	2	3	4	5	6	7	8	9	10	11	12
$P(X=x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$\textcircled{2} \quad P(X \leq 7) = \frac{21}{36}$$

$$\textcircled{3} \quad P(X > 10) = \frac{3}{36}$$

$$\mathcal{X} = \{0, 1, 2, \dots\}$$

When \mathcal{X} is countably infinite, we cannot write down the entire table:

Exercise: If $X = \#$ jellyfish washed up on the beach, we might have

x	0	1	2	3	4	5	$P(X > 5)$
$P(X = x)$	0.050	0.149	0.224	0.224	0.168	0.101	\dots

Handwritten notes: A wavy line is drawn under the probabilities for x=0 to x=5. An arrow points from the right edge of the table to the label $P(X > 5)$.

How can we find $P(X > 5)$?

1 minus the
sum of the
other
numbers.

Of interest later on: These are Poisson probabilities with $\lambda = 3$.

Expected value (mean/average value)

Expected value of a discrete rv

For X a discrete rv which takes the values x_1, x_2, x_3, \dots with the probabilities p_1, p_2, p_3, \dots , the *expected value* of X is given by

$\mathbb{E}X$

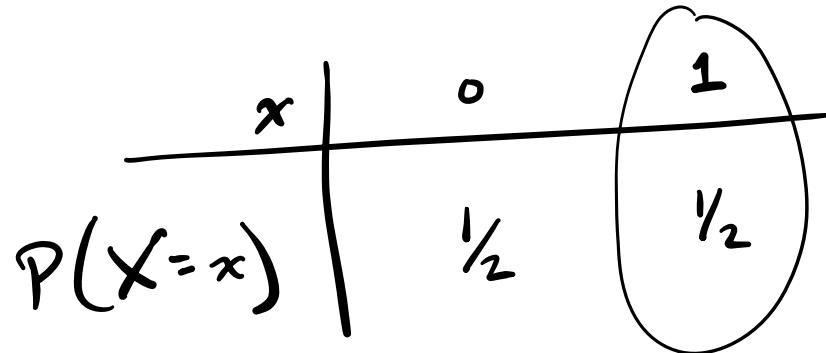
$$\mathbb{E}X = \underbrace{p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots}_{\text{.....}}$$

Expected value, call \mathbb{E} the expectation operator.

- The average of many realizations of X should be close to $\mathbb{E}X$.
- $\mathbb{E}X$ is the “balancing point” of probability distribution.
- We often use $\underline{\mu}$ to denote $\mathbb{E}X$.
- We often call $\mathbb{E}X$ the *mean* of X

$$\underline{\mu} = \text{"mu"}$$

$$X = \begin{cases} 1 & \text{heads} \\ 0 & \text{tails} \end{cases}$$



Exercise: Flip a ^{fair} coin and let $X = 1$ if heads, $X = 0$ otherwise.

- 1 Find $\mathbb{E}X$.
- 2 Discuss...

$$\mathbb{E}X = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$$

Repeat experiment, observe many realizations of X :

$$\text{average} = \frac{\#\{1's \text{ (heads)}\}}{\#\text{ times I flipped coin}} \text{ should be close to } \frac{1}{2}.$$

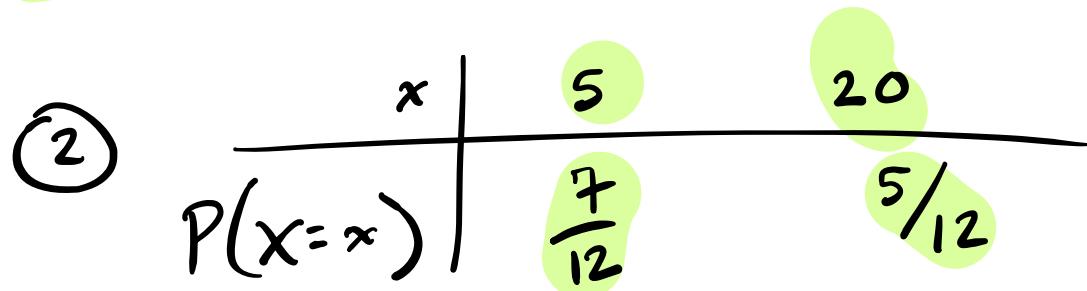
1101001001101101011100100...

Exercise: Let X = money won from playing this game:

Roll a die and draw one bill from a bag...

Roll \square , $\square\square$, $\square\square\square$ \rightarrow draw from bag 1: 3 \$5 bills and 1 \$20 bill
Roll $\square\square$, $\square\square\square$ \rightarrow draw from bag 2: 2 \$5 bills and 2 \$20 bills
Roll $\square\square\square$ \rightarrow draw from bag 3: 1 \$5 bill and 3 \$20 bills

- ① Give X . $X = \{5, 20\}$
- ② Tabulate the probability distribution of X .
- ③ Give EX .
- ④ If the game costs 7 dollars to play, do you recommend playing it?



(3)

$$\mathbb{E} X = \frac{7}{12} \cdot 5 + \frac{5}{12} \cdot 20$$

$$= \frac{35 + 100}{12}$$

$$= \frac{135}{12}$$

$$= 11 \frac{3}{12}$$

Exercise: Consider a 10-sided die with sides displaying 1, 2, 3, and 4 as:

side of die	1	2	3	4	5	6	7	8	9	10
number displayed	1	1	1	1	2	2	2	3	3	4

Let X = the number on the up-face of the die when it is rolled.

- 1 Tabulate the probability distribution of X .
- 2 Add to the table the cumulative probabilities $P(X \leq x)$ for all $x \in \mathcal{X}$.
- 3 Find $P(X > 3)$.
- 4 Find $\mathbb{E}X$.

1

$$\mathcal{X} = \{1, 2, 3, 4\}$$

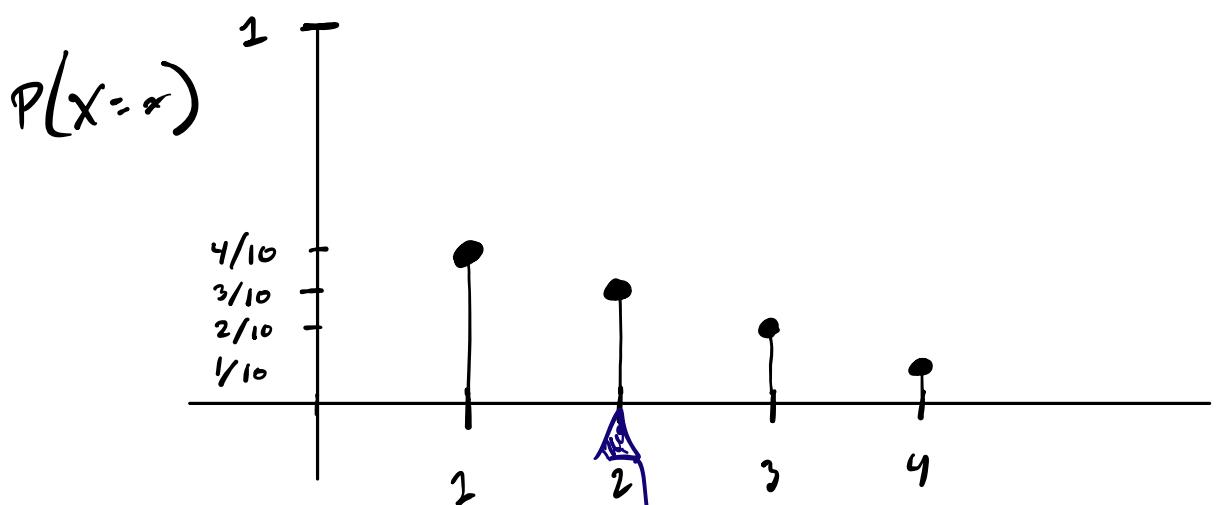
(2)	x	1	2	3	4
$P(X=x)$		$\frac{4}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{1}{10}$
$P(X \leq x)$		$\frac{4}{10}$	$\frac{7}{10}$	$\frac{9}{10}$	1

$$(3) P(X > 3) = \frac{1}{10}$$

$$(4) E[X] = \frac{4}{10} \cdot 1 + \frac{3}{10} \cdot 2 + \frac{2}{10} \cdot 3 + \frac{1}{10} \cdot 4$$

$$= \frac{4 + 6 + 6 + 4}{10}$$

$$\begin{aligned}
 P(X > 3) &= 1 - P(X \leq 3) &= 2. \\
 &= 1 - \frac{9}{10} \\
 &= \frac{1}{10}
 \end{aligned}$$



gives position of fulcrum
for balancing the prob. dist.

"expected value"

Variance of a random variable

The **variance** of a random variable X with mean μ is defined as

$$\text{Var } X = \mathbb{E}(X - \mu)^2.$$

- $\text{Var } X$ is the expected squared deviation of X from μ .
- Measure of "spread" for the distribution of X .
- Often use σ^2 to denote $\text{Var } X$.
- Use $\underline{\sigma}$ to denote $\sqrt{\text{Var } X}$, which is called the **standard deviation** of X .

σ : "sigma"

Σ

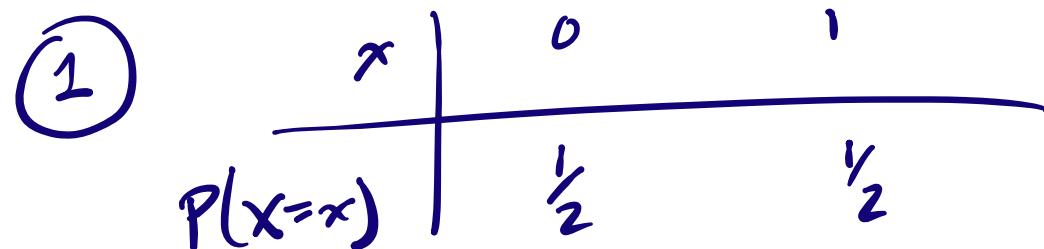
Variance for discrete rvs

If X has mean μ and takes the values x_1, x_2, x_3, \dots w/probs p_1, p_2, p_3, \dots , then

$$\underline{\text{Var } X} = p_1(x_1 - \mu)^2 + p_2(x_2 - \mu)^2 + p_3(x_3 - \mu)^2 + \dots$$

Exercise: Get the variance of the following random variables

- 1 Let $X = 1$ if coin flip “heads”, $X = 0$ if “tails.”
- 2 Let $X =$ number on the up-face of a 6-sided die when it is rolled.



$$\mu = \mathbb{E} X = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$$

$$\begin{aligned}
 \sigma^2 &= \text{Var } X = \frac{1}{2} (0-\mu)^2 + \frac{1}{2} (1-\mu)^2 \quad (\mu = \frac{1}{2}) \\
 &= \frac{1}{2} \left(0 - \frac{1}{2}\right)^2 + \frac{1}{2} \left(1 - \frac{1}{2}\right)^2 \\
 &= \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \\
 &= \frac{1}{4}
 \end{aligned}$$

Standard deviation: $\sigma = \sqrt{\text{Var } X} = \sqrt{\frac{1}{4}} = \frac{1}{2}$.

② Let X = number on the up-face of a 6-sided die when it is rolled.

	x	1	2	3	4	5	6
$P(X=x)$		$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$\begin{aligned}
 \mu &= \#X = \frac{1+2+3+4+5+6}{6} = \frac{21}{6} \\
 &= 3\frac{3}{6} \\
 &= 3.5
 \end{aligned}$$

$$\begin{aligned}
 \sigma^2 &= \text{Var } X = \frac{1}{6} (1-3.5)^2 + \frac{1}{6} (2-3.5)^2 + \dots + \frac{1}{6} (6-3.5)^2 \\
 &= \dots
 \end{aligned}$$