# STAT 515 Lec 05 # Computing Binomial probabilities n <- 10 x <- 3 p <- 0.7 # choose(10,3) * (0.7)^3 *(1 - 0.7)^(10 - 3) choose(n,x)*p^x*(1-p)^(n-x) # P(X <= 6) x <- c(0,1,2,3,4,5,6) choose(n,x)*p^x*(1-p)^(n-x) sum( choose(n,x)*p^x*(1-p)^(n-x) ) ### hypergeometric distribution N <- 100 M <- 10 n <- 5 x <- 3 choose(M,x) * choose(N-M,n-x) / choose(N,n) ## The spades example; N <- 52 M <- 13 n <- 5 x <- 0:5 # all whole numbers 0 through 5 px <- choose(M,x)*choose(N - M, n -x) / choose(N,n) px # get binomial probabilities (for sampling with replacement) p <- 13/52 n <- 5 x <- 0:5 px_binom <- choose(n,x) * p^x *(1 - p)^(n-x) px_binom round(px,3) round(px_binom,3) # mix ten deck of cards together N <- 520 M <- 130 n <- 5 x <- 0:5 # all whole numbers 0 through 5 px2 <- choose(M,x)*choose(N - M, n -x) / choose(N,n) px2 round(px,3) # single deck round(px2,3) # combined deck round(px_binom,3) # binomial (with replacement) # suppose I want P(X <= 3) x <- 0:3 sum(choose(M,x)*choose(N - M, n -x) / choose(N,n)) # for binomial x <- 0:3 sum( choose(n,x) * p^x *(1 - p)^(n-x)) pbinom(3,n,p) # easier #P (X = 3) , X is binomial dbinom(3,n,p) # HW 3, Q3, part d N <- 100 d <- 0:10 n <- 10 px0 <- choose(d,0)*choose(N - d,n) / choose(N,n) px0