STAT 515 Lec 05 slides

Bernoulli trials, binomial and hypergeometric

distributions

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.
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Bernoulli trial J

A Bernoulli trial is an experiment with the two outcomes “success’ and “failure”.
LA

We often Ienote the probability of a “success’. o <P < |
T

Examples:
© Flip a coin and call “heads” a “success”. If the coin is fair, p = 1/2.

@ Shoot a free throw and call making it a “success’. What is your p??
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Consider a rv X that encodes the outcome of a Bernoulli trial such that

1 if “success”
X = { 0 if “failure”

Bernoulli distribution

Let X be a rv with support X = {0,1} such that P(X =1) = p.
Then X has the Bernoulli distribution with success probability p.

We write X ~ Bernoulli(p).

The probabilities P(X = x) are given by
P(X =x)=p*(1—p)' > for x € {0,1}.
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Exercise: Let X ~ Bernoulli(p). 1 -\-
Q Find EX. P <
© Find Var X.

® Ex-=(l-pyo+ (DY = P I

® . x- eo(e-t) « ¢l R,

= é’?) o 4 p(1-6y = (I By (¢t + PCO)

STAT 515 Lec 05 slides 4 / 15

Karl Gregory (U. of South Carolina)



Exercise: Let X = # free throws you make in 4 attempts. Let p = 0.7.
© Give the sample space of the experiment.
@ Assign a probability to each outcome in the sample space.
© Tabulate the probability distribution of X.

@‘]—)‘ (o."?i C,D%
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i“O“'ial distribution

Let X = # “successes’ in n of indep. Bernoulli trials, each with success prob. p.
Then X has the Binomial distribution based on n Bernoulli trials with success

probability p. -

e

We write X ~ Binomial(n, p).

K7

The probabilities P(X = x) for x € {0,1,...,n} are given by

n

Px =) = (7)o = p)

X
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Use R functions dbinom() and pbinom() to compute probabilities for X:W o
n

P(X = x) = dbinom(x,n,p) Z:.u\

P(X < x) = pbinom(x,n,p) _

h-o
Aoter) - (2) 7 5T b menn
Exercise: Let X = # free throws you make in 10 attempts. Let p = 0.7.
@ Compute P(X = 3). = j]o =09

© Give the probability that you make at least one free throw.

© Find P(X < 6).
© Find P(X > 6).

lo-%

@ ?( X=3) : C§>@‘}S (1-0%) = 0.007
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Binomial mean and variance
If X ~ Binomial(n, p), then

o KX = np.

@ Var X = np(1 — p).

Discuss how we would get these expressions.

Exercise: Suppose you make free throws with p = 0.7 and attempts are indep.

© Compute EX when X = # frees throws made in 10 attempts.
@ |If you shoot 1000 free throws, how many do you “expect” to make? F00O

@ EX:np= 0¥ 13
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Exercise: Consider sampling 5 ppl from a population of 100 of whom 10 vape. Let

X = # in sample who vape.

@ Give P(X =x) for x=0,1,...,5 if we sample without replacement.
@ Give P(X =x) for x=0,1,...,5 if we sample with replacement.

Dfﬁw ns 5 N: '00
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Exercise: Draw 5 cards from a 52-card deck and let X = #®s in hand.
@ Tabulate P(X = x) for x =0,1,2,3,4,5.
@ What if you replace each card in the deck and re-shuffle before drawing

7 g N
. (D)

o x=) - (\5;- )

1 s z 3 L :

Goe R code

Px=)
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Hypergeometric distribution

Draw n > 0 marbles from a bag of N > 0 marbles, of which M > 0 are red.
If X = # red marbles drawn, then X has the Hypergeometric distribution.

We write X ~ Hypergeometric(N, M, n).

If X ~ Hypergeometric(N, M, n), then we have
X 2 0,1 ,N

P(X =x) = () (o) for x = max{n — (N — M), 0}, ..., min{M, n}

()
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Use R functions dhyper () and phyper () to compute probabilities for X:

P(X = x) = dhyper(x,m,n,k)
P(X < x) = phyper(x,m,n,k),

where m is our M, n is our N — M, and k is our n.

May be simpler to compute the probabilities as

choose (M, x) *choose(N-M,n-x)

choose(N,n)
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Hypergeometric mean and variance
If X ~ Hypergeometric(N, M, n), then

o EX = n%.
o VarX = nX [("’;,’(’Ml—)“”)].

Discuss how we would get these expressions.
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Exercise: Mix ten 52-card decks together. Then draw 5 cards from the combined
deck and let X = #d&s in hand.

@ Tabulate P(X = x) for x =0,1,2,3,4,5.
Q Give EX.
© What if you replace each card in the deck and re-shuffle before drawing

again? ( .zo 5 ( s:j;no >
@ "") - T 20 -
?LX (‘56 )

+ P(x=2) +POCD

0 (X£'53 - ?(xczj 2 ‘FL\('«')
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Hypergeometric probs approach binomial probs as N — oc and M/N — p.

If the pop. is large, sampling with/without replacement are practically the same! J

Discuss treating samples from finite-but-large populations as independent draws.
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Probability mass function

The probability mass function (pmf) of a discrete rv X with support X is the

function given by
p(x) = P(X =x) forxeX.

For x ¢ X, p(x) =0.

If X is an rv with pmf p, then we write X ~ p.

é':vw ’Bmv“‘-/ 'bw“t/ ““( "7!“’)""”"“’“ W""&'
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