

STAT 515 hw 1

Basics of sets, basic probability

1. Consider rolling two dice and let

A = both rolls are at least 3

B = both rolls are 3 or less

C = the sum of the rolls is 10 or more

D = the absolute value of the difference between the rolls is at most 1.

Give the following probabilities:

- (a) $P(A)$
- (b) $P(B)$
- (c) $P(C)$
- (d) $P(D)$
- (e) $P(A \cup B)$
- (f) $P(A \cap B)$
- (g) $P(A \cap B^c)$
- (h) $P((A \cap B)^c)$
- (i) $P(A^c \cup B^c)$
- (j) $P((A \cup B)^c)$
- (k) $P(A^c \cap B^c)$
- (l) $P(C \cap D)$
- (m) $P(C \cup D^c)$

Hint: Begin by listing all possible outcomes of rolling two dice, i.e. the sample space.

2. Consider a bag of marbles, 19 of which are green, 25 of which are blue, and 6 of which are red. Moreover, suppose 9 of the green marbles are opaque, 5 of the blue marbles are opaque, and 3 of the red marbles are opaque, and the rest of the marbles are transparent.
 - (a) Suppose you draw one marble from the bag. Give the probability that you draw
 - i. a red marble.
 - ii. a transparent green marble.
 - iii. an opaque marble.
 - iv. a marble that is either blue or opaque or both.
 - (b) Suppose you remove all the opaque marbles from the bag and then draw one marble. Give the probability that you draw
 - i. a green marble.
 - ii. a red or a blue marble.

3. Suppose you draw 1 athlete at random from a group of 100 athletes such that: 30 swim; 44 run; 9 swim and run; 5 swim, bike, and run; 11 swim and bike; 10 bike and run but do not swim; and 35 only bike. Let S , B , and R denote the events that the athlete you draw swims, bikes, and runs, respectively. Give the following probabilities:

- (a) $P(S \cup R)$
- (b) $P(S \cap R^c)$
- (c) $P(B)$
- (d) $P(S \cup B)$
- (e) $P((S \cap R) \cap B^c)$
- (f) $P(S^c \cup R^c)$
- (g) $P((R \cap B) \cup (R \cap B^c))$