

STAT 515 hw 2

Counting, conditional probability, Bayes' rule, independence

1. An iteration of the board game Candyland has the following cards: 6 each of red, purple, yellow, blue, orange, and green cards, and then 4 each of double red, double purple, double yellow, double blue, double orange, and double green cards. In addition, there is one lollipop, one peppermint, one peanut, and one ice cream card.

- (a) If you draw 5 cards, one at a time, placing each card back into the deck and shuffling before the next draw, how many sequences of draws are possible?

There are 16 different cards, so there are $16^5 = 1,048,576$ different sequences of 5 draws, with replacement.

- (b) If you draw 5 cards, one at a time, without placing each card back before drawing the next, what is the probability that one of your 5 cards will be the ice cream cone?

We first count the number of 5 card “hands” with the ice cream cone card. The first task is to draw the ice cream cone. There is 1 way to do this. The second task is to draw the remaining 4 cards from among the remaining 63 cards. This can be done in $\binom{63}{4}$ ways. The total number of 5 card “hands” is $\binom{64}{5}$. So we have

$$P(\text{get ice cream cone}) = \frac{1 \cdot \binom{63}{4}}{\binom{64}{5}} = \frac{5}{64}.$$

2. Three guests to a tea party sit down in three chairs. Then the host re-arranges them according to a pre-made seating chart

- (a) What is the probability that all of the guests may stay in their chairs?

There are $3! = 6$ possible seating arrangements. The guests will choose the correct one themselves with probability 1/6.

- (b) What is the probability that at least one guest may stay in her chair? *Hint: Just write down all the sample points. Don't try to use counting rules.*

If we symbolize the host's seating arrangement as 123 and the possible arrangements the guests may choose as

$$\mathcal{S} = \left\{ \begin{array}{lll} 123 & 213 & 312 \\ 132 & 231 & 321 \end{array} \right\},$$

we see that in 4 out of the 6 possible arrangements, at least one guest is seated in the right place, so the probability is 2/3.

3. A train to the frontier will have 4 passenger cars, 3 cattle cars, and 2 luggage cars.

(a) Bandits will enter two cars, selected at random. Give the probability that the bandits enter:

- Two passenger cars.

There are $\binom{9}{2}$ ways to select the two rearmost cars. There are $\binom{4}{2}$ ways to choose two passenger cars to be rearmost. So the answer is

$$P(\text{two passenger cars}) = \frac{\binom{4}{2}}{\binom{9}{2}} = \frac{1}{6}.$$

- A luggage car and a passenger car.

We have

$$P(\text{a luggage car and a passenger car}) = \frac{\binom{4}{1}\binom{2}{1}}{\binom{9}{2}} = \frac{2}{9}.$$

- At least one cattle car.

We have

$$\begin{aligned} P(\text{at least one cattle car}) &= P(\text{one cattle car}) + P(\text{two cattle cars}) \\ &= \frac{\binom{3}{1}\binom{6}{1}}{\binom{9}{2}} + \frac{\binom{3}{2}}{\binom{9}{2}} \\ &= \frac{1}{12} + \frac{1}{2} \\ &= \frac{7}{12}. \end{aligned}$$

(b) Suppose the train cars are put in random order. With what probability are all the passenger cars connected (with no non-passenger car between any two passenger cars)?

First, line up all the passenger cars together; there are $4!$ ways of doing this. Now, treating the four passenger cars together as a single car (since we are not going to separate them), we have 6 “cars” to arrange. This can be done in $6!$ ways. So we have $4! \cdot 6!$ ways of arranging the 9 cars such that the four passenger cars are together. There is a total of $9!$ ways of arranging all 9 individual cars, so we have

$$P(\text{gentleman must pass only through passenger cars}) = \frac{6!4!}{9!} = \frac{1}{21}.$$

(c) There are 14 head of cattle to be transported in the three cattle cars.

- In how many ways can 5, 5, and 4 head of cattle, respectively, be put into the three cattle cars?

This is a partitioning of the 14 head of cattle into groups of 5, 5, and 4. The number of ways to do this is

$$\frac{14!}{5!5!4!} = 252252.$$

ii. Of the 14 head of cattle, 3 are Jersey cows. If 5, 5, and 4 of the 14 head of cattle are put into the three cattle cars at random, with what probability will the Jersey cows all be placed in the same car?

The number of ways in which the 3 Jersey cows can be put together is given by

$$\frac{11!}{2!5!4!} + \frac{11!}{5!2!4!} + \frac{11!}{5!5!1!} = 6930 + 6930 + 2772 = 16632.$$

which we get by considering placing them in the first, the second, or the third cattle car. Since there are 252252 ways to partition the 14 head of cattle into groups of sizes 5, 5, and 4, the probability that the Jersey cows are placed together is

$$\frac{16632}{252252} = 0.06593407.$$

(d) Mr. and Mrs. Wilkins and their two daughters and three sons are boarding one of the passenger cars on the next stop.

i. In how many different orders can the members of the Wilkins family enter the car?

The family members can enter the car in $7! = 5040$ orders.

ii. In how many of these orders does Mrs. Wilkins precede Mr. Wilkins?

Mrs. Wilkins precedes Mr. Wilkins in one half of the orders, that is in 2520 orders.

iii. In how many of these orders does Mrs. Wilkins and her two daughters precede Mr. Wilkins and his three sons?

Mrs. Wilkins and her two daughters precede Mr. Wilkins and his three sons in $3!4! = 144$ of the orders.

(e) At each of the 10 stops along Lil' Jonnie's journey on the train, he will decide whether or not to scrawl his initials somewhere at the train station. At how many unique sets of stations can Lil' Jonnie scrawl his initials?

Lil' Johnnie performs a sequence of 10 tasks, each of which can be done in 2 ways, so the job can be done in $2^{10} = 1024$ ways.

4. Suppose there are 5 bowling balls which are identical except that one is magical and delivers, no

matter what, a strike with probability $3/4$. Suppose you get a strike 1 out of 4 times on average when using non-magical bowling balls. You select one of the 5 balls at random and send it down the lane...

(a) Give the probability that you get a strike.

Let S be the event of a strike and let M be the event of choosing the magic ball. The problem gives $P(S|M) = 3/4$, $P(S|M^c) = 1/4$ and $P(M) = 1/5$. We have

$$P(S) = P(S|M)P(M) + P(S|M^c)P(M^c) = \frac{3}{4} \cdot \frac{1}{5} + \frac{1}{4} \cdot \frac{4}{5} = \frac{7}{20}$$

(b) Given that you got a strike, what is the probability you chose the magic bowling ball?

We have

$$P(M|S) = \frac{P(S|M)P(M)}{P(S|M)P(M) + P(S|M^c)P(M^c)} = \frac{3/20}{7/20} = \frac{3}{7}.$$

(c) Suppose you choose a ball and with the same ball you get two strikes in a row. What is the probability that you chose the magic ball?

Let S_1 and S_2 be the event of getting a strike the first and the second time you send the ball down the lane, respectively. We have $P(S_1 \cap S_2|M) = P(S_1|M)P(S_2|M) = 9/16$, assuming independence of S_1 and S_2 given M . Also, $P(S_1 \cap S_2|M^c) = P(S_1|M^c)P(S_2|M^c) = 1/16$. So we have

$$P(M|S_1 \cap S_2) = \frac{P(S_1 \cap S_2|M)P(M)}{P(S_1 \cap S_2|M)P(M) + P(S_1 \cap S_2|M^c)P(M^c)} = \frac{9/16}{9/16 + 1/16} = \frac{9}{10}.$$

5. Consider a bag of marbles, 19 of which are green, 25 of which are blue, and 6 of which are red. Moreover, suppose 9 of the green marbles are opaque, 5 of the blue marbles are opaque, and 3 of the red marbles are opaque, and the rest of the marbles are transparent. Suppose you draw one marble from the bag and let G , B , and R be the events that the marble is green, blue, and red, respectively, and let O be the event that it is opaque.

It helps to make a table:

	Green	Blue	Red	Total
Opaque	9	5	3	17
Transparent	10	20	3	33
Total	19	25	6	50

(a) Find $P(R|O)$.

$$P(R|O) = 3/17.$$

(b) Find $P(R|O^c)$.

$$P(R|O^c) = 3/33.$$

(c) Find $P(R)$.

$$P(R) = 6/50.$$

(d) Check whether R and O are independent.

We have $P(R) = 6/50 \neq P(R|O) = 3/17$, so R and O are not independent.

(e) Find $P(B^c|O)$.

$$P(B^c|O) = 12/17.$$

(f) Find $P(O|G)$.

$$P(O|G) = 9/19.$$

(g) Find $P(B \cup G|O)$.

$$P(B \cup G|O) = 14/17.$$

6. Suppose you order a new pair of swimming goggles and that they will be manufactured with a defect making them leaky with probability $1/40$.

(a) What is the probability of receiving a defective pair, and then again receiving a defective pair when you re-order the goggles?

Let D_1 and D_2 be the event that the goggles are defective the first and second time ordered, respectively. Then we have

$$P(D_1 \cap D_2) = P(D_1)P(D_2) = (1/40)^2 = 0.000625.$$

(b) What assumption did you make in order to compute your answer to part (a)?

The assumption was that D_1 and D_2 were independent events.

(c) What is the probability that you receive a defective pair and then a functioning pair when you re-order the goggles?

We have

$$P(D_1 \cap D_2^c) = P(D_1)P(D_2^c) = (1/40)(39/40) = 39/1600 = 0.024375.$$

(d) Give an expression for the probability that you receive K defective pairs of goggles, where $K \geq 1$.

Letting D_i be the event that the goggles are defective the i th time ordered, for $i = 1, \dots, K$, we have

$$P(D_1 \cap \dots \cap D_K) = P(D_1) \times \dots \times P(D_K) = (1/40)^K,$$

assuming that D_1, \dots, D_K are mutually independent.