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Rust inhibitors example

Data from Kutner et al. (2005).
Ten experimental units assigned to each of four brands of rust inhibitors.

link <- url("https://people.stat.sc.edu/gregorkb/data/KNNLrust.txt")
rust <- read.csv(link,col.names=c("score","brand","rep"),sep = "", header = FALSE)
head (rust)

score brand rep

1 43.9 1 1
2 39.0 1 2
3 46.7 1 3
4 43.8 1 4
5 44.2 1 5
6 47.7 1 6

Do the brands differ in effectiveness? Is there a best brand?
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Randomized experiments comparing treatments

Start with N experimental units (EUs), e.g. subjects, mice, etc.

Randomly assign each EU to one of a treatment groups.

Measure on each EU after treatment a response Y.
Compute the average of the responses in each treatment group..

Questions we'd like to answer:

P Is the response mean the same in all treatment groups?
P If not, then which pairs of means are different?
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One-way ANOVA setup

Consider the model

Yij=p+m+ey; j=1L..n, i=1..aq,

where

> Y

;; is the response for EU j in treatment group 1.

P> 1 represents an overall or baseline mean.

P> 7, is the treatment effect for treatment i.

P The &;; are independent Normal(0, o) error terms.

P The n; are the numbers of replicates in the treatment groups.

Of central interest are the hypotheses

Hy: 7, =0foralli versus H;: At least one 7; is nonzero.

1

If we reject H,, we may wish to sort/compare the treatments.
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|dentifiability constraint in the treatment effects model

The model has a + 1 parameters to describe a treatment means.

To identify p, 7, ..., 7, uniquely, we typically set 7, = 0.
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Alternative “cell means model” setup

An alternate version of the model is

}/;,]:/'Ll_‘_gl]’ j:17"'7ni7 121,...,a,
where

> Y, is the response for EU j in treatment group i.
P> 11, represents the mean of treatment group i.
P The &,; are error terms distributed as Normal(0, o%).
In this version of the model the central hypotheses become

Hy py=--=u, versus Hy: p, # p; for some i # ¢’
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Goals in one-way ANOVA

Under the one-way ANOVA setup

Y,y=pw+7+e; j=L..,n, i=1..a,

ind .
where g;; '~ Normal(0, 0?), we wish to

Visualize the data.

Estimate the parameters u, 7, ..., 7,.
Estimate the error term variance o2.

Decompose the variation in the Y; as signal plus noise.

Test whether there is any difference in treatment group means.
Sort/compare the treatment means if there is any difference.

Check whether the model assumptions are satisfied.

Noos~rwWwbH=
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Rust inhibitors example (cont)
Visually compare the means of several treatment groups with boxplots.

boxplot(score ~ brand, data = rust)
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Treatment effect estimation in one-way ANOVA

P For each i = 1, ..., a define the observed treatment group mean as
1 &
Yy =— Z Yij-
n; ‘=
=
P Then, setting 7, = 0, estimate p and 7y, ..., 7, as

p=Y, and 7,=Y,-Y, fori=2,..,a.

7

P So treatment group 1 is regarded as a baseline, where:
1. The baseline has estimated mean fi.
2. The estimates 7,, ..., 7, are deviations from the baseline.

P One obtains the fitted values Y, = fi + 7, = ¥; fori=1,...,a.
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Rust inhibitors example (cont)

Use 1m() with as.factor() to fit the one-way ANOVA model.

# use as.factor() to designate brand as a "factor"
1m_out <- Ilm(score ~ as.factor(brand), data = rust)
1m_out

Call:
Im(formula = score ~ as.factor(brand), data = rust)

Coefficients:

(Intercept) as.factor(brand)2 as.factor(brand)3 as.factor(brand)4
43.14 46.30 24.81 -2.67
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See how i, Ty, 73,7, are related to Y, , Y, , Y3, Y, .

# compute the group means
aggregate(rust$score, by = list(rust$brand), FUN = mean)

Group.1 X
1 43.14
2 89.44
3 67.95
4 40.47

Sw N e
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Estimation of the error term variance o

As in linear regression, define the

P fitted values ;; as ¥;; =Y, for j=1,...,n;, and the
P residuals &, as &, = Y;; =V,
forj=1,...,n;,t=1,...,a.

Then an unbiased estimator of o2 is given by

1 a i 1 a "
~2 22 7 \2
- & = (1/13 }/'L )
N a i=1 j=1 N N—a i=1 j=1

Divide by N — a since the N residuals depend on a estimated quantities...
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Rust inhibitors example (cont)

tab <- cbind(rust$brand,rust$score,lm_out$fitted.values,lm_out$residuals)
colnames(tab) <- c("brand","score","Fitted value","Residual")
head(tab,n = 13)

brand score Fitted value Residual

1
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sgsghat <- sum(lm_out$residuals™2) / (nrow(rust) - 4)

sgsqghat
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The value of & is printed in the summary () output:

summary (1m_out)

Call:

Im(formula = score ~ as.factor(brand),

Residuals:
Min 1Q Median 3Q Max
-4.270 -1.597 0.395 1.275 4.730

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 43.1400 0.7836 55.056 <2e-16 *x*x
as.factor(brand)2 46.3000 1.1081 41.782 <2e-16 **x
as.factor(brand)3 24.8100 1.1081 22.389 <2e-16 *x*
as.factor(brand)4 -2.6700 1.1081 -2.409 0.0212 *
Signif. codes: O 'x*x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

data =

rust)

Residual standard error: 2.478 on 36 degrees of freedom

Multiple R-squared: 0.9863, Adjusted R-squared:

F-statistic: 866.1 on 3 and 36 DF, p-value: < 2.2e-16

0.9852
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Sums of squares in the one-way ANOVA model

As in linear regression we decompose the variation in the Y; by defining:

P Total sum of squares: SSp,, = >.7 | ijl(Y” —Y )?

P Treatment sum of squares: SSy,, = > n;(¥; —Y )

P Error sum of squares: SSg,.o, = 2?21 Z;L;1<Y2J -Y;)?

In the above, }7 denotes the overall mean, defined as

o AT—1 @ n; .
Y =N3>, Zj:l Y;j, where N =ny,...,n,.

We have SS.; = SSt,¢ + SSgrror-
Note that SSr, is computed just like SSg, in linear regression.

SSTrt

We again define R? = S5y,
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Sampling distributions of our sums of squares

The SS, appropriately scaled, follow chi-square distributions:

| 2 SSTot /U2 ~ X?\[—l(d)Tot)
PSSt /‘72 ~ X271(¢Trt)
» SSErrOr /02 ~ X?V—a’

where ¢, and ¢, are noncentrality parameters.
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The mean squares in the one-way ANOVA model

Dividing 5SS+ and SSg,.., by their dfs, we define:

SS
P Treatment mean square: MSy,, = ” jr{

SSError
N —a

P Error mean square: MSgror =

The ratio F,,, = has an F distribution.
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The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source Df SS MS F value p-value
Treatment a —1 SSrpg MSty  Fiyat P(F > Fg,)
Error N —a SSeror  MSgiror
Total N-—-1 SSot

MSTrt

In the table F,,, = .
MSError

The p-value is based on F' ~ F,_; n_,.
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Rust inhibitors example (cont)

Obtain the ANOVA table with the anova() function on the 1m() output.

anova(lm_out)

Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(brand) 3 15954 5317.8 866.12 < 2.2e-16 **x*
Residuals 36 221 6.1

Signif. codes: 0 'sx¥x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Testing whether there is any difference in treatment means

In the one-way ANOVA model we wish to test

Hy: 7;, =0forall i versus H;: At least one 7; is nonzero.

K3
We use the overall F test of significance:

MS
1. Compute Fj,,, = MS Tt
Error

2. Reject Hy at a if Fo0 > Fy y N_g 0
3. Obtain p-value as P(F' > F,.,;), where F ~ F, | .

The value of F.

sta

. and the p-value are printed in the summary() output.
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Interpretation of F statistic

. . Between treatment variation
Note that F,, is a ratio of the form

Within treatment variation
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Exercise: For which data set will the F-statistic be largest/smallest?
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Exercise: Compute F,, for the rust data using the summary info:

group replicates mean

standard deviation

1 10 43.14
2 10 89.44
3 10 67.95
4 10 40.47

3.00
2.22
2.17
2.44

a

Hint: SSg,0 = Y (n; — 1)S?, where S2 = — (Y, —Y;)?

=1
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Some Cl formulas (without familywise adjustment)

In the cell-means formulation of the model
}/7"7:/'1'2+E7,‘]’ j:17""ni7 ’i:17___7a,,

where p; = 1t + 7;, we have the following Cl formulas:

Target (1 — @)100% confidence interval
K Vi £ N a.0/204/ 7
My — My Y, —Y, + tN—a,0/20 ni + nli,
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Rust inhibitors example (cont)

Compute 95% Cls for pq and pig — piy.

alpha <- 0.05

lol <- yilbar - qt(l-alpha/2,N-a) * sqrt(sgsqhat) / sqrt(nl)
upl <- ylbar + qt(l-alpha/2,N-a) * sqrt(sgsghat) / sqrt(nl)
c(lol,upl)

[1] 41.55084 44.72916
lo21 <- y2bar - ylbar - qt(l-alpha/2,N-a) * sqrt(sgsqhat) * sqrt(i/nl + 1/n2)

up21 <- y2bar - ylbar + qt(l-alpha/2,N-a) * sqrt(sgsghat) * sqrt(1/nl + 1/n2)
c(lo21,up21)

[1] 44.05259 48.54741
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Post-hoc comparisons of means

P If we reject Hy: p1y = -+~ = p,, then we may wish to compare means.

P Call such comparisons post-hoc as we do them after the F-test.

P We may wish to compare several pairs of means, which is like testing
several hypotheses at once.

P> When several hypotheses are tested at once, the familywise Type |
error rate is the probability that any Type | error is committed.

P We discuss two methods for post-hoc comparisons of means which
control the familywise Type | error rate.
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Comparing all pairs of means

P We want to build a Cl for u; — u,/ for all pairs i # 4’.
P> Suppose the design is balanced, i.e. n, =n foralli =1, ... a.
P> If we build for all 7 # i’ the ordinary (1 — «) x 100% Cls

}_/i. - Yfi’. + ta(nfl),a/Qa \% 2/”7

each one will cover its target with probability 1 — a.
P But now we want simultaneous coverage with probability 1 — ¢, i.e.

P(M; i {Cl for pu; — p;s captures target}) =1 —a.

P Above probability is called the familywise coverage.
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The venerable John Tukey

Figure 1: John Tukey, 1915 — 2000
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Multiple comparisons of means with Tukey's HSD

P> Suppose the design is balanced, i.e. n; =n foralli=1,...,a

P Suppose we could find the value g, ,(, 1), Such that

Y—Y/ "
T (s AT} PPN WS
i o/v/n ’ '

P Then with probability 1 — « the Cls

Y Y’iqaan U/f

will simultaneously cover the targets p; — ;s for all i # i’. Show!
P Tukey made tables of the values q, 4, 1) o-

P Can use the simultaneous intervals to sort/compare the means.
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Table A6 Critical Values of the Studentized Range, for Tukey's HSD-

Errordf | Two-sided o
5 0.05
5 0.01
6 0.05
6 0.01
7 0.05
7 0.01
8 0.05
8 0.01
9 0.05
9 0.01

10 0.05
10 0.01
11 0.05
11 0.01
12 0.05
12 0.01
13 0.05
13 0.01
14 0.05
14 0.01
15 0.05
15 0.01
16 0.05
16 0.01
17 0.05
17 0.01
18 0.05
18 0.01
19 0.05
19 0.01
20 0.05
20 0.01
25 0.05
25 0.01
30 0.05
30 0.01
40 0.05
40 0.01
60 0.05
60 0.01

3.89
2.86
3.82
2.83
376

349
4.45
344
437
340
4.28

385 | 410
480 | 5.05
379 | 404
469 | 493
374 | 398
459 | 482

Number of Groups

4.99

5.13 5.25

Table produced using the SAS System using function PROBMC(SRANGE'.1 ~ a,d51)

Figure 2: Table A.6 from Mohr, Wilson,

and Freund (2021)
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Rust inhibitors example (cont)

For the rust data we have n = 10 and a = 4.

At oo = 0.05 we have g, o(n—1),0 = d4,36,0.05 ~ 3.85 from table.
Obtain exact value with qtukey(.95,4,36) = 3.8087984.
Build the Tukey HSD CI for g — 4.

n <- 10
a <-4
MSE <- sum(lm_out$residuals”™2) / ( ax(n-1))
ylbar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])

me <- qtukey(.95,a,a*(n-1)) * sqrt(MSE) / sqrt(10)
lo21 <- y2bar - ylbar - me

up21 <- y2bar - ylbar + me

c(lo21,up21)

[1] 43.31554 49.28446
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Rust inhibitors example (cont)

Use TukeyHSD() on aov() output to obtain the simultaneous Cls.

# must use the aov() function instead of the 1lm() function
aov_out <- aov(score ~ as.factor(brand), data

TukeyHSD (aov_out)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = score ~ as.factor(brand), data

$ as.factor(brand)

diff
2-1 46.30
3-1 24.81
4-1 -2.67
3-2 -21.49
4-2 -48.97
4-3 -27.48

43.
.825536

21

-5.
-24.
.954464

-51

-30.

lwr
315536

654464
474464

464464

upr

.2844635
. 7944635
.3144635

5055365

.9855365
.4955365

[eleleleNeNe

p adj

.0000000

0000000
0933303
0000000

.0000000
.0000000

32/56



plot (TukeyHSD(aov_out))

95% family—-wise confidence level

3-2 4-1 3-1

4-2
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Differences in mean levels of as.factor(brand)
33/56



Comparison of treatments with a baseline treatment

P It may be that not all pairwise comparisons are of interest.

P Then Tukey's method is too conservative (Cls wider than necessary).
P Say we want to compare all treatments to a “baseline” treatment.
» Build Cls for Wi — Mg, ©=2,...,a, 1 the baseline treatment.

P This makes a — 1 Cls instead of (‘21) Cls.

P Can use Dunnett's method, Dunnett (1964).
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The equally venerable Charles Dunnett

Figure 3: Charles Dunnett, 1921 — 2007 (Canadian, served in WWII, photo
taken in Belgium)
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Dunnett's method for comparisons with a baseline

P Assume n; = n for all i (balanced case).
P Given a value dpy a(n—1),a Such that

Y V) — (u, —
(Y;. i) (i Nl)‘ <dpanye | =1—a
av/2/n ’ ’

P (max
2<i<a

with probability 1 — « the Cls
Y Yl = dn a(n—1), 2/’”‘

will simultaneously cover the targets p1; — p; foralli =2,...,a
P Dunnett made tables of the values d

n,a(n—1),a

P Cannot sort all the means after Dunnett's.
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Table A5 Critical Values

Error df | Two-sided o

30 0.01
40 0.05
40 0.01
60 0.05
60 0.01

T orioeed fom The SAS Sysem wing funcion PROBMC(DUNNETT:
his able produced from the SAS Sy

for Dunnett's Two-Sided Test of Treatments versus Control.

lumber of Groups Counting Both Treatments and Control

298
213

258
319

=0k, where k

Figure 4: Table A.5 from Mohr, Wilson, and Freund (2021)
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Rust inhibitor data (cont)

For the rust data we have n = 10 and a = 4.

At a = 0.05 we have d, ,;,—1),0 = d4.36,0.05-

Use value 2.44 in the table (should be close).

Treat Brand 1 as the baseline and make comparisons with Dunnett's.
# just show the comparison of treatment 2 to the baseline

ylbar <- mean(rust$score[rust$brand == 1])

y2bar <- mean(rust$score[rust$brand == 2])

me <- 2.44 * sqrt(MSE) * sqrt(2/10) # margin of error for Dunnett's

lo21 <- y2bar - ylbar - me
up21 <- y2bar - ylbar + me

c(y2bar - yilbar,lo21,up21)

[1] 46.30000 43.59615 49.00385
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Rust inhibitor data (cont)

Use DunnettTest () from R package DescTools.

library(DescTools) # first time run install.packages("DescTools")
Dunnett_out <- DunnettTest(score ~ as.factor(brand), data = rust, control = "1")
Dunnett_out

Dunnett's test for comparing several treatments with a control :
95, family-wise confidence level

$71°
diff lwr.ci upr.ci pval
46.30 43.582516 49.017484 <2e-16 *x*x

2-1
3-1 24.81 22.092516 27.527484 <2e-16 **x*
4-1 -2.67 -5.387484 0.047484 0.0549 .

Signif. codes: O 'x*x*' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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plot (Dunnett_out)

95% family—wise confidence level
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Dunnett’s vs Tukey's

VVV VVY

Tukey’s is for comparisons between all pairs of means.

Dunnett's is for comparison of means with a baseline.

So Tukey's must make greater adjustments to control the familywise
Type | error.

Therefore Tukey intervals will be wider than Dunnett intervals.
Tukey's allows you to sort the means, while Dunnett’'s does not.
Both methods assume a balanced design, i.e. n;, = n for all 4.
Modifications for unbalanced designs exist, but are not
straightforward to implement in R.
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Bonferroni correction

If building B Cls you can ALWAYS use the Bonferroni correction:

P Build each Cl ordinarily, but use /B instead of a.

P Ensures simultaneous coverage of all Cls with probability > 1 — a.

P True prob of simultaneous coverage may be greater than 1 — «

P Bonferroni-corrected Cls will be wider than Dunnett's and wider
than Tukey's if used for making those same comparisons.

P> Use when we do not know how to adjust for multiple comparisons.

42/56



Rust inhibitor data (cont)

Compare Brand 3 to 4 and Brand 1 to 3, using the Bonferroni correction
to control the familywise error rate.

ylbar <- mean(rust$score[rust$brand == 1])
y3bar <- mean(rust$scorel[rust$brand == 3])
y4bar <- mean(rust$score[rust$brand == 4])
alpha <- 0.05

B <- 2

me <- qt(1 - (alpha/B)/2,a*(n-1)) * sqrt(MSE) * sqrt(2/n)

tab <- rbind(c(y3bar - y4bar - me,y3bar - y4bar + me),
c(ylbar - y3bar - me,ylbar - y3bar + me))

rownames (tab) <- c("3-4","1-3")

colnames(tab) <- c("lower","upper")

tab

lower  upper
3-4 24.888 30.072
1-3 -27.402 -22.218
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Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

1. The responses are normally distributed around the treatment means
(Check QQ plot of residuals).

2. The response has the same variance in all treatment groups (Check
residuals vs fitted values plot).

3. The response values are independent of each other (No way to
check; must trust experimental design).
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Rust inhibitors example (cont)

plot(lm_out,which = 2)
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Rust inhibitors example (cont)

plot(lm_out,which = 1)

Residuals

Residuals vs Fitted
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Im(score ~ as.factor(brand))
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Perception of slope example

Do axis re-scalings affect how we perceive an x-y relationship?

For a single data set with data pairs (X;,Y;), with X; ~ Normal(0,1)
and Y, = Normal(X;, 1) for i = 1, ..., 50, three scatterplot treatments
were constructed:

1. “Control” used x and y plotting limits given by the range of the data.
2. "X" extended the x-limits by 1.5 in each direction.
3. "Y" extended the y-limits by 1.5 in each direction.

Each student in a class was randomly assigned a scatterplot and told to
draw with a ruler the best-fitting line through the data. The slope of
each student-drawn line was measured and recorded as the response.

Is the response mean the same in the three treatment groups?
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An artifact from each treatment group:

Figure 5: “Control” Figure 6: “X" Figure 7: “Y"

slope <- ¢(1.23,1.80,1.81,1.29,2.89,1.58,0.99,1.24,
1.26,1.57,1.27,1.19,1.82,1.76,1.91,1.25,
1.09,1.29,1.12,1.51,2.13,1.16,0.62,1.04)
trt <- C("X”,"Y",“X","X","Y","X","Y","C",
myw wgn ngu wgn wyn wgn wyw wyn
"X","X",“Y","C","Y","X“,"Y”,"C")
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boxplot(slope ~ trt)

slope

15 2.0 2.5

1.0

o
I I
X Y

trt
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1m_slope <- 1lm(slope ~ as.factor(trt))

summary (1lm_slope)

Call:

Im(formula = slope ~ as.factor(trt))

Residuals:
Min 1Q Median

Coefficients:
Estimate Std.

(Intercept) 1.36857 0.
as.factor(trt)X 0.05143 0.
as.factor(trt)Y 0.17365 0.

Signif. codes: O 'x**' 0.001

3Q
-0.9222 -0.2847 -0.1293 0.2628

Max
1.3478

Error t value Pr(>|tl|)

18161
24868
24215

[

7.536 2.12e-07 **x
0.207 0.838
0.717 0.481

0.01 'x' 0.05 '.'" 0.1 " ' 1

Residual standard error: 0.4805 on 21 degrees of freedom
Adjusted R-squared: -0.06661
F-statistic: 0.2818 on 2 and 21 DF,

Multiple R-squared: 0.02614,

p-value: 0.7572
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plot(1lm_slope,which = 2)
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plot(1lm_slope,which = 1)

Residuals
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Levene's test for equality of variances

Checks if the mean magnitude of the residuals is equal across groups:

1. Obtain the residuals £;; from the one-way ANOVA model.

2. Treat the absolute values |¢;;| of the residuals as new responses.

3. Test for equal means of the new responses with the F test.

So, do the ordinary F-test with the |¢,;| as the responses.

53/56



Perception of slope example (cont)
Perform Levene's test:

ehat <- 1lm_slope$residuals
1m_levene <- lm(abs(ehat) ~ as.factor(trt))
summary (1lm_levene)

Call:
Im(formula = abs(ehat) ~ as.factor(trt))

Residuals:
Min 1Q Median 3Q Max
-0.29136 -0.12769 -0.04980 0.08219 0.79864

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.20980 0.09352 2.243 0.0358 *
as.factor(trt)X 0.05020 0.12805 0.392 0.6990
as.factor(trt)Y 0.33934 0.12469 2.721 0.0128 =*

Signif. codes: O '***' 0.001 '#*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2474 on 21 degrees of freedom

Multiple R-squared: 0.303, Adjusted R-squared: 0.2367
F-statistic: 4.565 on 2 and 21 DF, p-value: 0.02258
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Can also use the leveneTest () function in the R package car.

library(car)
leveneTest (slope~as.factor(trt),center = mean)

Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)

group 2 4.5652 0.02258 *
21

Signif. codes: O 'x*x*' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We conclude that the variances are not equal across treatment groups.
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