STAT 516 Lec 05

One-way analysis of variance (ANOVA)

Karl Gregory

2025-03-04

Rust inhibitors example

Data from Kutner et al. (2005).

Ten experimental units assigned to each of four brands of rust inhibitors.

```
link <- url("https://people.stat.sc.edu/gregorkb/data/KNNLrust.txt")
rust <- read.csv(link,col.names=c("score","brand","rep"),sep = "", header = FALSE)
head(rust)</pre>
```

```
score brand rep
1 43.9 1 1
2 39.0 1 2
3 46.7 1 3
4 43.8 1 4
5 44.2 1 5
6 47.7 1 6
```

Do the brands differ in effectiveness? Is there a best brand?

Randomized experiments comparing treatments

Start with N experimental units (EUs), e.g. subjects, mice, etc.

Randomly assign each EU to one of \boldsymbol{a} treatment groups.

Measure on each EU after treatment a response $Y. \ \ \,$

Compute the average of the responses in each treatment group...

Questions we'd like to answer:

- Is the response mean the same in all treatment groups?
- If not, then which pairs of means are different?

One-way ANOVA setup

Consider the model

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \quad j = 1, \dots, n_i, \quad i = 1, \dots, a,$$

where

- $ightharpoonup Y_{ij}$ is the response for EU j in treatment group i.
- $\blacktriangleright \mu$ represents an overall or baseline mean.
- τ_i is the <u>treatment effect</u> for treatment *i*.
- The ε_{ij} are independent Normal $(0,\sigma^2)$ error terms.
- lacktriangle The n_i are the numbers of replicates in the treatment groups.

Of central interest are the hypotheses

$$H_0{:}\ \tau_i=0\ {\rm for\ all}\ i\quad {\rm versus}\quad \ H_1{:}\ {\rm At\ least\ one}\ \tau_i\ {\rm is\ nonzero}.$$

If we reject H_0 , we may wish to sort/compare the treatments.

Identifiability constraint in the treatment effects model

The model has a+1 parameters to describe a treatment means.

To identify μ , τ_1, \dots, τ_n uniquely, we typically set $\tau_1 = 0$.

Alternative "cell means model" setup

An alternate version of the model is

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad j = 1, \dots, n_i, \quad i = 1, \dots, a,$$

where

- $ightharpoonup Y_{ij}$ is the response for EU j in treatment group i.
- $\blacktriangleright \mu_i$ represents the mean of treatment group i.
- ▶ The ε_{ij} are error terms distributed as Normal $(0, \sigma^2)$.

In this version of the model the central hypotheses become

$$H_0 \hbox{:} \ \mu_1 = \dots = \mu_a \quad \text{ versus } \quad H_1 \hbox{:} \ \mu_i \neq \mu_i' \text{ for some } i \neq i'.$$

Goals in one-way ANOVA

Under the one-way ANOVA setup

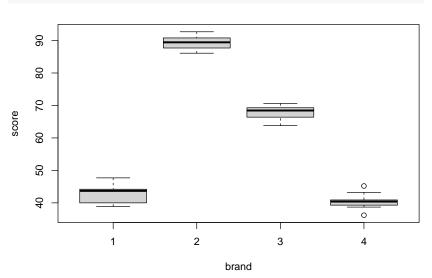
$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \quad j = 1, \dots, n_i, \quad i = 1, \dots, a,$$

where $\varepsilon_{ij} \stackrel{\mathrm{ind}}{\sim} \mathrm{Normal}(0,\sigma^2)$, we wish to

- 1. Visualize the data.
- 2. Estimate the parameters $\mu, \tau_1, \dots, \tau_a$.
- 3. Estimate the error term variance σ^2 .
- 4. Decompose the variation in the Y_{ij} as signal plus noise.
- 5. Test whether there is any difference in treatment group means.
- 6. Sort/compare the treatment means if there is any difference.
- 7. Check whether the model assumptions are satisfied.

Visually compare the means of several treatment groups with boxplots.

boxplot(score ~ brand, data = rust)



Treatment effect estimation in one-way ANOVA

For each $i=1,\ldots,a$ define the observed treatment group mean as

$$\bar{Y}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}.$$

▶ Then, setting $\tau_1 = 0$, estimate μ and τ_2, \dots, τ_a as

$$\hat{\mu} = \bar{Y}_{1.} \quad \text{ and } \quad \hat{\tau}_i = \bar{Y}_{i.} - \bar{Y}_{1.} \quad \text{ for } i = 2, \ldots, a.$$

- ▶ So treatment group 1 is regarded as a baseline, where:
 - 1. The baseline has estimated mean $\hat{\mu}$.
 - 2. The estimates $\hat{\tau}_2, \dots, \hat{\tau}_a$ are deviations from the baseline.
- \blacktriangleright One obtains the fitted values $\hat{Y}_{ij}=\hat{\mu}+\hat{\tau}_i=\bar{Y}_{i.}$ for $i=1,\dots,a.$

Use lm() with as.factor() to fit the one-way ANOVA model.

```
# use as.factor() to designate brand as a "factor"
lm_out <- lm(score ~ as.factor(brand), data = rust)
lm_out</pre>
```

```
Call:
```

```
lm(formula = score ~ as.factor(brand), data = rust)
```

Coefficients:

```
(Intercept) as.factor(brand)2 as.factor(brand)3 as.factor(brand)4 43.14 46.30 24.81 -2.67
```

See how $\hat{\mu},\hat{\tau}_2,\hat{\tau}_3,\hat{\tau}_4$ are related to $\bar{Y}_{1.},\bar{Y}_{2.},\bar{Y}_{3.},\bar{Y}_{4.}$

```
# compute the group means
aggregate(rust$score, by = list(rust$brand), FUN = mean)
```

```
Group.1 x
1 1 43.14
2 2 89.44
3 3 67.95
4 4 40.47
```

Estimation of the error term variance σ^2

As in linear regression, define the

- \blacktriangleright fitted values \hat{Y}_{ij} as $\hat{Y}_{ij} = \bar{Y}_{i}$, for $j = 1, \dots, n_i$, and the
- $\qquad \qquad \underline{ \text{residuals } \hat{\varepsilon}_{ij}} \text{ as } \hat{\varepsilon}_{ij} = Y_{ij} \bar{Y}_{i.}$

for $j = 1, ..., n_i$, i = 1, ..., a.

Then an unbiased estimator of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{N-a} \sum_{i=1}^a \sum_{j=1}^{n_i} \hat{\varepsilon}_{ij}^2 = \frac{1}{N-a} \sum_{i=1}^a \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y_{i.}})^2.$$

Divide by ${\cal N}-a$ since the ${\cal N}$ residuals depend on a estimated quantities...

```
tab <- cbind(rust$brand,rust$score,lm_out$fitted.values,lm_out$residuals)
colnames(tab) <- c("brand","score","Fitted value","Residual")
head(tab,n = 13)</pre>
```

```
brand score Fitted value Residual
      1 43.9
                    43.14
                              0.76
1
        39.0
                    43.14
                           -4.14
3
      1 46.7
                    43.14
                           3.56
      1 43.8
                    43.14
                           0.66
5
      1 44.2
                    43.14
                             1.06
      1 47.7
                    43.14
                             4.56
                    43.14
      1 43.6
                              0.46
8
      1 38.9
                    43.14
                             -4.24
9
      1 43.6
                    43.14
                              0.46
10
      1 40.0
                    43.14
                             -3.14
      2 89.8
                    89.44
                            0.36
11
12
      2 87.1
                    89.44
                             -2.34
13
      2 92.7
                    89.44
                              3.26
```

```
sgsqhat <- sum(lm_out$residuals^2) / (nrow(rust) - 4)
sgsqhat</pre>
```

```
[1] 6.139833
```

The value of $\hat{\sigma}$ is printed in the summary() output:

summary(lm out) Call: lm(formula = score ~ as.factor(brand), data = rust) Residuals: Min 1Q Median 3Q Max -4.270 -1.597 0.395 1.275 4.730 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 43.1400 0.7836 55.056 <2e-16 *** as.factor(brand)2 46.3000 1.1081 41.782 <2e-16 *** as.factor(brand)3 24.8100 1.1081 22.389 <2e-16 *** as.factor(brand)4 -2.6700 1.1081 -2.409 0.0212 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.478 on 36 degrees of freedom Multiple R-squared: 0.9863, Adjusted R-squared: 0.9852 F-statistic: 866.1 on 3 and 36 DF, p-value: < 2.2e-16

Sums of squares in the one-way ANOVA model

As in linear regression we decompose the variation in the Y_{ij} by defining:

- \blacktriangleright Total sum of squares: $\mathrm{SS_{Tot}} = \sum_{i=1}^a \sum_{j=1}^{n_i} (Y_{ij} \bar{Y}_{..})^2$
- ▶ Treatment sum of squares: $SS_{Trt} = \sum_{i=1}^{a} n_i (\bar{Y}_{i.} \bar{Y}_{..})^2$
- \blacktriangleright Error sum of squares: $\mathrm{SS}_{\mathrm{Error}} = \sum_{i=1}^a \sum_{j=1}^{n_i} (Y_{ij} \bar{Y}_{i.})^2$

In the above, $\bar{Y}_{...}$ denotes the overall mean, defined as

$$\bar{Y}_{..}=N^{-1}\sum_{i=1}^a\sum_{j=1}^{n_i}Y_{ij}, \quad \text{ where } N=n_1,\dots,n_a.$$

We have $SS_{Tot} = SS_{Trt} + SS_{Error}$.

Note that SS_Trt is computed just like SS_Reg in linear regression.

We again define
$$R^2 = \frac{\mathrm{SS}_{\mathrm{Trt}}}{\mathrm{SS}_{\mathrm{Tot}}}.$$

Sampling distributions of our sums of squares

The SS, appropriately scaled, follow chi-square distributions:

- $\blacktriangleright \ \mathrm{SS_{Tot}} \, / \sigma^2 \sim \chi^2_{N-1}(\phi_{\mathrm{Tot}})$
- $\blacktriangleright \ \mathrm{SS}_{\mathrm{Trt}} \, / \sigma^2 \sim \chi^2_{a-1}(\phi_{\mathrm{Trt}})$
- $ightharpoonup \mathrm{SS}_{\mathrm{Error}}/\sigma^2 \sim \chi^2_{N-a}$,

where ϕ_{Tot} and ϕ_{Trt} are noncentrality parameters.

The mean squares in the one-way ANOVA model

Dividing SS_Trt and $\mathrm{SS}_\mathrm{Error}$ by their dfs, we define:

- Treatment mean square: $MS_{Trt} = \frac{SS_{Trt}}{a-1}$

The ratio $F_{\rm stat} = {{
m MS}_{
m Trt} \over {
m MS}_{
m Error}}$ has an F distribution.

The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source	Df	SS	MS	F value	p-value
Treatment Error Total	$a-1 \\ N-a \\ N-1$	$\begin{array}{c} \mathrm{SS_{Trt}} \\ \mathrm{SS_{Error}} \\ \mathrm{SS_{Tot}} \end{array}$	${ m MS_{Trt}} { m MS_{Error}}$	$F_{ m stat}$	$P(F>F_{\rm stat})$

In the table
$$F_{\mathrm{stat}} = \frac{\mathrm{MS}_{\mathrm{Trt}}}{\mathrm{MS}_{\mathrm{Error}}}.$$

The p-value is based on $F \sim F_{a-1,N-a}$.

Obtain the ANOVA table with the anova() function on the lm() output.

Testing whether there is any difference in treatment means

In the one-way ANOVA model we wish to test

$$H_0$$
: $au_i=0$ for all i versus H_1 : At least one au_i is nonzero.

We use the overall F test of significance:

- 1. Compute $F_{\mathrm{stat}} = \frac{\mathrm{MS}_{\mathrm{Trt}}}{\mathrm{MS}_{\mathrm{Error}}}$
- 2. Reject H_0 at α if $F_{\mathrm{stat}} > F_{a-1,N-a,\alpha}$.
- 3. Obtain p-value as $P(F>F_{\rm stat})$, where $F\sim F_{a-1,N-a}.$

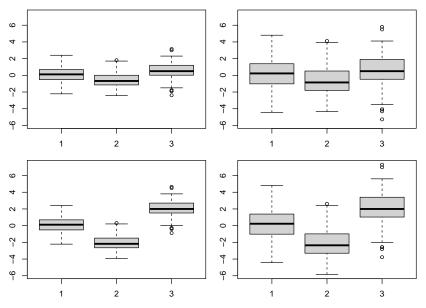
The value of $F_{\rm stat}$ and the p-value are printed in the summary() output.

Interpretation of F statistic

Note that $F_{\rm stat}$ is a ratio of the form

Between treatment variation
Within treatment variation

Exercise: For which data set will the F-statistic be largest/smallest?



Exercise: Compute F_{stat} for the rust data using the summary info:

group	replicates	mean	standard deviation
1	10	43.14	3.00
2	10	89.44	2.22
3	10	67.95	2.17
4	10	40.47	2.44

$$\text{Hint: } \mathrm{SS}_{\mathrm{Error}} = \sum_{i=1}^{a} (n_i - 1) S_i^2 \text{, where } S_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2$$

Some CI formulas (without familywise adjustment)

In the cell-means formulation of the model

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad j = 1, \dots, n_i, \quad i = 1, \dots, a,$$

where $\mu_i = \mu + \tau_i$, we have the following CI formulas:

$(1-\alpha)100\%$ confidence interval
$\begin{split} \bar{Y}_{i.} &\pm t_{N-a,\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n_i}} \\ \bar{Y}_{i.} &- \bar{Y}_{i'.} &\pm t_{N-a,\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}} \end{split}$

Compute 95% CIs for μ_1 and $\mu_2 - \mu_1$.

```
lo1 <- y1bar - qt(1-alpha/2,N-a) * sqrt(sgsqhat) / sqrt(n1)
up1 <- y1bar + qt(1-alpha/2,N-a) * sqrt(sgsqhat) / sqrt(n1)
c(lo1,up1)

[1] 41.55084 44.72916

lo21 <- y2bar - y1bar - qt(1-alpha/2,N-a) * sqrt(sgsqhat) * sqrt(1/n1 + 1/n2)
up21 <- y2bar - y1bar + qt(1-alpha/2,N-a) * sqrt(sgsqhat) * sqrt(1/n1 + 1/n2)
c(lo21,up21)
```

[1] 44.05259 48.54741

alpha <- 0.05

Post-hoc comparisons of means

- If we reject H_0 : $\mu_1 = \cdots = \mu_a$, then we may wish to compare means.
- Call such comparisons post-hoc as we do them *after* the F-test.
- We may wish to compare several pairs of means, which is like testing several hypotheses at once.
- When several hypotheses are tested at once, the <u>familywise Type I</u> <u>error rate</u> is the probability that <u>any Type I error is committed.</u>
- ▶ We discuss two methods for post-hoc comparisons of means which control the familywise Type I error rate.

Comparing all pairs of means

- ▶ We want to build a CI for $\mu_i \mu_{i'}$ for all pairs $i \neq i'$.
- Suppose the design is balanced, i.e. $n_i = n$ for all i = 1, ..., a.
- ▶ If we build for all $i \neq i'$ the ordinary $(1 \alpha) \times 100\%$ CIs

$$\bar{Y}_{i.} - \bar{Y}_{i'.} \pm t_{a(n-1),\alpha/2} \hat{\sigma} \sqrt{2/n},$$

each one will cover its target with probability $1-\alpha$.

b But now we want *simultaneous* coverage with probability $1 - \alpha$, i.e.

$$P(\cap_{i\neq i'}\{\operatorname{CI} \text{ for } \mu_i-\mu_{i'} \text{ captures target}\})=1-\alpha.$$

Above probability is called the familywise coverage.

The venerable John Tukey

Figure 1: John Tukey, 1915 - 2000

Multiple comparisons of means with Tukey's HSD

- Suppose the design is <u>balanced</u>, i.e. $n_i = n$ for all i = 1, ..., a.
- Suppose we could find the value $q_{a,a(n-1),\alpha}$ such that

$$P\left(\max_{i\neq i'}\left\{\frac{|(\bar{Y}_{i.}-\bar{Y}_{i'.})-(\mu_i-\mu_{i'})|}{\hat{\sigma}/\sqrt{n}}\right\}\leq q_{a,a(n-1),\alpha}\right)=1-\alpha.$$

▶ Then with probability $1 - \alpha$ the CIs

$$\bar{Y}_{i.} - \bar{Y}_{i'.} \pm q_{a,a(n-1),\alpha} \hat{\sigma}/\sqrt{n}$$

will simultaneously cover the targets $\mu_i - \mu_{i'}$ for all $i \neq i'$. Show!

- Tukey made tables of the values $q_{a,a(n-1),\alpha}$.
- Can use the simultaneous intervals to sort/compare the means.

Error df	Two-sided α	T = Number of Groups						
		2	3	4	5	6	7	8
5	0.05	3,64	4.6	5.22	5.67	6.03	6.33	6.58
5	0.01	5.70	6.98	7.80	8.42	8.91	9.32	9.67
6	0.05	3.46	4.34	4.90	5.30	5.63	5.90	6.12
6	0.01	5.24	6.33	7.03	7.56	7.97	8.32	8.61
7	0.05	3.34	4.16	4.68	5.06	5.36	5.61	5.82
7	0.01	4.95	5.92	6.54	7.00	7.37	7.68	7.94
8	0.05	3.26	4.04	4.53	4.89	5.17	5.40	5.60
8	0.01	4.75	5.64	6.20	6.62	6.96	7.24	7.47
9	0.05	3.20	3.95	4.41	4.76	5.02	5.24	5.43
9	0.01	4.60	5.43	5.96	6.35	6.66	6.91	7.13
10	0.05	3.15	3.88	4.33	4.65	4.91	5.12	5.30
10	0.01	4.48	5.27	5.77	6.14	6.43	6.67	6.87
11	0.05	3.11	3.82	4.26	4.57	4.82	5.03	5.20
11	0.01	4.39	5.15	5.62	5.97	6.25	6.48	6.67
12	0.05	3.08	3.77	4.20	4.51	4.75	4.95	5.12
12	0.01	4.32	5.05	5.50	5.84	6.1	6.32	6.51
13	0.05	3.06	3.73	4.15	4.45	4.69	4.88	5.05
13	0.01	4.26	4.96	5.40	5.73	5.98	6.19	6.37
14	0.05	3.03	3.70	4.11	4.41	4.64	4.83	4.99
14	0.01	4.21	4.89	5.32	5.63	5.88	6.08	6.26
15	0.05	3.01	3.67	4.08	4.37	4.59	4.78	4.94
15	0.01	4.17	4.84	5.25	5.56	5.80	5.99	6.16
16	0.05	3.00	3.65	4.05	4.33	4.56	4.74	4.90
16	0.01	4.13	4.79	5.19	5.49	5.72	5.91	6.08
17	0.05	2.98	3.63	4.02	4.30	4.52	4.70	4.86
17	0.01	4.10	4.74	5.14	5.43	5.66	5.85	6.01
18	0.05	2.97	3.61	4.00	4.28	4.49	4.67	4.82
18	0.01	4.07	4.70	5.09	5.38	5.60	5.79	5.94
19	0.05	2.96	3.59	3.98	4.25	4.47	4.65	4.79
19	0.01	4.05	4.67	5.05	5.33	5.55	5.73	5.89
20	0.05	2.95	3.58	3.96	4.23	4.45	4.62	4.77
20	0.01	4.02	4.64	5.02	5.29	5.51	5.69	5.84
25	0.05	2.91	3.52	3.89	4.15	4.36	4.53	4.67
25	0.01	3.94	4.53	4.88	5.14	5.35	5.51	5.65
30	0.05	2.89	3.49	3.85	4.10	4.30	4.46	4.60
30	0.01	3.89	4.45	4.80	5.05	5.24	5.40	5.54
40	0.05	2.86	3.44	3.79	4.04	4.23	4.39	4.52
40	0.01	3.82	4.37	4.69	4.93	5.11	5.26	5.39
60	0.05	2.83	3.40	3.74	3.98	4.16	4.31	4.44
60	0.01	3.76	4.28	4.59	4.82	4.99	5.13	5.25

Figure 2: Table A.6 from Mohr, Wilson, and Freund (2021)

For the rust data we have n = 10 and a = 4.

At $\alpha=0.05$ we have $q_{a,a(n-1),\alpha}=q_{4,36,0.05}\approx 3.85$ from table.

Obtain exact value with qtukey(.95,4,36) = 3.8087984.

Build the Tukey HSD CI for $\mu_2 - \mu_1$.

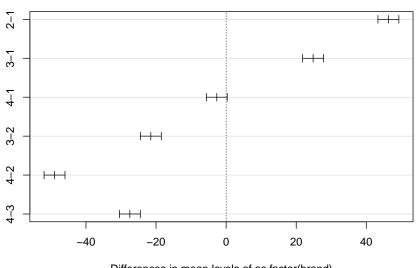
```
n <- 10
a <- 4
MSE <- sum(lm_out$residuals^2) / ( a*(n-1))
y1bar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])
me <- qtukey(.95,a,a*(n-1)) * sqrt(MSE) / sqrt(10)
lo21 <- y2bar - y1bar - me
up21 <- y2bar - y1bar + me
c(lo21,up21)</pre>
```

[1] 43.31554 49.28446

Use TukeyHSD() on aov() output to obtain the simultaneous Cls.

```
# must use the aov() function instead of the lm() function
aov out <- aov(score ~ as.factor(brand), data = rust)</pre>
TukeyHSD(aov out)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = score ~ as.factor(brand), data = rust)
$`as.factor(brand)`
     diff
                 lwr
                              upr
                                      p adj
2-1 46.30 43.315536 49.2844635 0.0000000
3-1 24.81 21.825536 27.7944635 0.0000000
4-1 -2.67 -5.654464 0.3144635 0.0933303
3-2 -21.49 -24.474464 -18.5055365 0.0000000
4-2 -48.97 -51.954464 -45.9855365 0.0000000
4-3 -27.48 -30.464464 -24.4955365 0.0000000
```

95% family-wise confidence level



Comparison of treatments with a baseline treatment

- It may be that not all pairwise comparisons are of interest.
- ▶ Then Tukey's method is too conservative (CIs wider than necessary).
- Say we want to compare all treatments to a "baseline" treatment.
- ▶ Build CIs for $\mu_i \mu_1$, i = 2, ..., a, 1 the baseline treatment.
- ▶ This makes a-1 CIs instead of $\binom{a}{2}$ CIs.
- Can use <u>Dunnett's method</u>, Dunnett (1964).

The equally venerable Charles Dunnett

Figure 3: Charles Dunnett, 1921 – 2007 (Canadian, served in WWII, photo taken in Belgium)

Dunnett's method for comparisons with a baseline

- Assume $n_i = n$ for all i (balanced case).
- ▶ Given a value $d_{n,a(n-1),\alpha}$ such that

$$P\left(\max_{2\leq i\leq a} \Big|\frac{(\bar{Y}_{i.}-\bar{Y}_{1.})-(\mu_i-\mu_1)}{\hat{\sigma}\sqrt{2/n}}\Big|\leq d_{n,a(n-1),\alpha}\right)=1-\alpha,$$

with probability $1-\alpha$ the CIs

$$\bar{Y}_{i.} - \bar{Y}_{1.} \pm d_{n,a(n-1),\alpha} \hat{\sigma} \sqrt{2/n}$$

will simultaneously cover the targets $\mu_i - \mu_1$ for all $i = 2, \dots, a$.

- Dunnett made tables of the values $d_{n,a(n-1),\alpha}$.
- Cannot sort all the means after Dunnett's.

Fable A.5	Two-sided α	T = Number of Groups Counting Both Treatments and Control						
		2	3	4	5	6	7	8
5	0.05	2.57	3.03	3.29	3.48	3.62	3.73	3.82
5	0.01	4.03	4.63	4.97	5.22	5.41	5.56	5.6
6	0.05	2.45	2.86	3.10	3.26	3.39	3,49	3.5
6	0.01	3.71	4.21	4.51	4.71	4.87	5.00	5.10
7	0.05	2.36	2.75	2.97	3.12	3.24	3.33	3.4
7	0.01	3.50	3.95	4.21	4.39	4.53	4.64	4.7
8	0.05	2.31	2.67	2.88	3.02	3.13	3.22	3.29
8	0.01	3.36	3.77	4.00	4.17	4.29	4,40	4.48
9	0.05	2.26	2.61	2.81	2.95	3.05	3.14	3.20
9	0.01	3.25	3.63	3.85	4.01	4.12	4.22	4.30
10	0.05	2.23	2.57	2.76	2.89	2.99	3.07	3.1-
10	0.01	3.17	3.53	3.74	3.88	3.99	4.08	4.16
11	0,05	2.20	2.53	2.72	2.84	2.94	3.02	3.08
11	0.01	3.11	3.45	3.65	3.79	3.89	3.98	4.05
12	0.05	2.18	2.50	2.68	2.81	2.90	2.98	3.04
12	0.01	3.05	3.39	3.58	3.71	3.81	3.89	3.96
13	0.05	2.16	2.48	2.65	2.78	2.87	2.94	3.00
13	0.01	3.01	3.33	3.52	3.65	3.74	3.82	3.89
14	0.05	2.14	2.46	2.63	2.75	2.84	2.91	2.97
14	0.01	2.98	3.29	3.47	3.59	3.69	3.76	3.83
15	0.05	2.13	2.44	2.61	2.73	2.82	2.89	2.95
15	0.01	2.95	3.25	3.43	3.55	3.64	3.71	3.78
16	0.05	2.12	2.42	2.59	2.71	2.80	2.87	2.92
16	0.01	2.92	3.22	3.39	3.51	3.60	3.67	3.73
17	0.05	2.11	2.41	2.58	2.69	2.78	2.85	2.90
17	0.01	2.90	3.19	3.36	3.47	3.56	3.63	3.69
18	0.05	2.10	2.40	2.56	2.68	2.76	2.83	2.89
18	0.01	2.88	3.17	3.33	3.44	3.53	3.60	3.66
19	0.05	2.09	2.39	2.55	2.66	2.75	2.81	2.87
19	0.01	2.86	3.15	3.31	3.42	3.50	3.57	3.63
20	0.05	2.09	2.38	2.54	2.65	2.73 3.48	2.80 3.55	2.86
20	0.01	2.85	3.13	3.29	3.40	2.69	2.75	2.8
25	0.05	2.06	2.34	2.50	2.61		3.45	3.5
25	0.01	2.79	3.06	3.21	3.31	3.39 2.66	2.72	2.7
30	0.05	2.04	2.32	2.47	2.58	3.33	3.39	3.4
30	0.01	2.75	3.01	3.15	3.25 2.54	2.62	2.68	2.7
40	0.05	2.02	2.29	2.44		3.26	3.32	3.3
40	0,01	2.70	2.95	3.09	3.19	2.58	2.64	2.6
60	0.05	2.00	2.27	2.41	2.51	3.19	3.25	3.2
30	0.03	2.66	2.90	3.03	3.12	3.19	3.23	3.25

Figure 4: Table A.5 from Mohr, Wilson, and Freund (2021)

Rust inhibitor data (cont)

For the rust data we have n = 10 and a = 4.

At $\alpha = 0.05$ we have $d_{a,a(n-1),\alpha} = d_{4,36,0.05}$.

Use value 2.44 in the table (should be close).

Treat Brand 1 as the baseline and make comparisons with Dunnett's.

```
# just show the comparison of treatment 2 to the baseline
y1bar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])

me <- 2.44 * sqrt(MSE) * sqrt(2/10) # margin of error for Dunnett's

lo21 <- y2bar - y1bar - me
up21 <- y2bar - y1bar + me

c(y2bar - y1bar,lo21,up21)</pre>
```

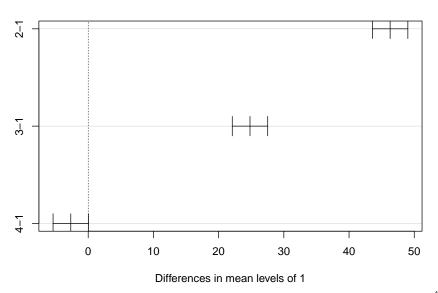
[1] 46.30000 43.59615 49.00385

Rust inhibitor data (cont)

Use DunnettTest() from R package DescTools.

```
library(DescTools) # first time run install.packages("DescTools")
Dunnett out <- DunnettTest(score ~ as.factor(brand), data = rust, control = "1")
Dunnett out
  Dunnett's test for comparing several treatments with a control :
    95% family-wise confidence level
$11
     diff
            lwr.ci upr.ci pval
2-1 46.30 43.582516 49.017484 <2e-16 ***
3-1 24.81 22.092516 27.527484 <2e-16 ***
4-1 -2.67 -5.387484 0.047484 0.0549 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

95% family-wise confidence level



Dunnett's vs Tukey's

- Tukey's is for comparisons between all pairs of means.
- Dunnett's is for comparison of means with a baseline.
- So Tukey's must make greater adjustments to control the familywise Type I error.
- ▶ Therefore Tukey intervals will be wider than Dunnett intervals.
- Tukey's allows you to sort the means, while Dunnett's does not.
- lackbox Both methods assume a balanced design, i.e. $n_i=n$ for all i. Modifications for unbalanced designs exist, but are not straightforward to implement in R.

Bonferroni correction

If building B CIs you can ALWAYS use the Bonferroni correction:

- ▶ Build each CI ordinarily, but use α/B instead of α .
- **E**nsures simultaneous coverage of all CIs with probability $\geq 1 \alpha$.
- lacktriangle True prob of simultaneous coverage may be greater than 1-lpha
- ▶ Bonferroni-corrected CIs will be wider than Dunnett's and wider than Tukey's if used for making those same comparisons.
- ▶ Use when we do not know how to adjust for multiple comparisons.

Rust inhibitor data (cont)

Compare Brand 3 to 4 and Brand 1 to 3, using the Bonferroni correction to control the familywise error rate.

```
lower upper 3-4 24.888 30.072 1-3 -27.402 -22.218
```

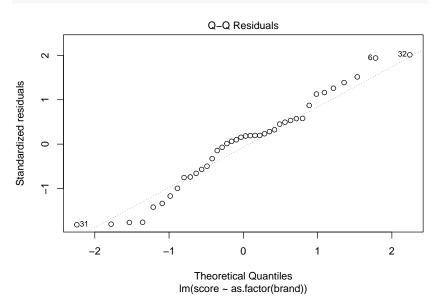
Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

- 1. The responses are normally distributed around the treatment means (Check QQ plot of residuals).
- 2. The response has the same variance in all treatment groups (Check residuals vs fitted values plot).
- 3. The response values are independent of each other (No way to check; must trust experimental design).

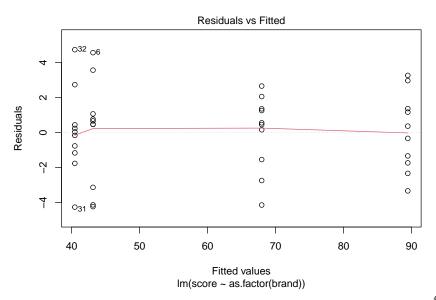
Rust inhibitors example (cont)

plot(lm_out, which = 2)



Rust inhibitors example (cont)

plot(lm_out, which = 1)



Perception of slope example

Do axis re-scalings affect how we perceive an x-y relationship?

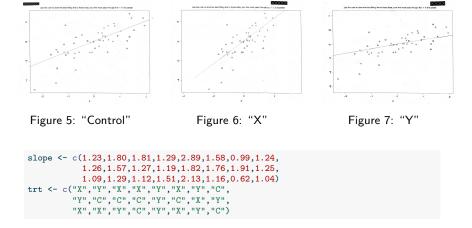
For a single data set with data pairs (X_i,Y_i) , with $X_i \sim \mathsf{Normal}(0,1)$ and $Y_i = \mathsf{Normal}(X_i,1)$ for $i=1,\dots,50$, three scatterplot treatments were constructed:

- 1. "Control" used x and y plotting limits given by the range of the data.
- 2. "X" extended the x-limits by 1.5 in each direction.
- 3. "Y" extended the y-limits by 1.5 in each direction.

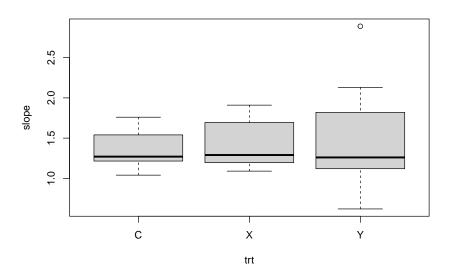
Each student in a class was randomly assigned a scatterplot and told to draw with a ruler the best-fitting line through the data. The slope of each student-drawn line was measured and recorded as the response.

Is the response mean the same in the three treatment groups?

An artifact from each treatment group:

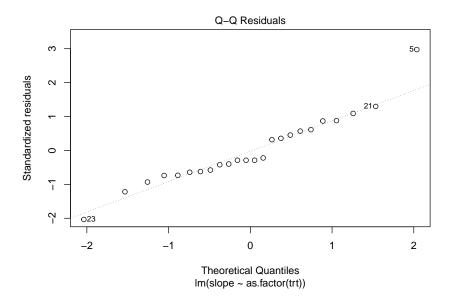


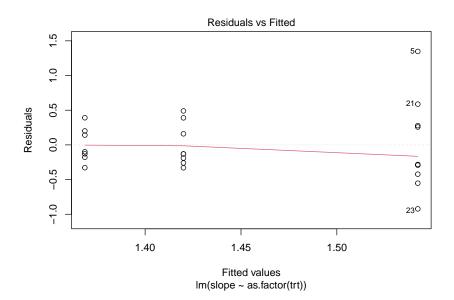
boxplot(slope ~ trt)



```
lm_slope <- lm(slope ~ as.factor(trt))</pre>
summary(lm_slope)
Call:
lm(formula = slope ~ as.factor(trt))
Residuals:
   Min
            10 Median
                           3Q
                                 Max
-0.9222 -0.2847 -0.1293 0.2628 1.3478
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.36857 0.18161 7.536 2.12e-07 ***
as.factor(trt)X 0.05143 0.24868 0.207 0.838
as.factor(trt)Y 0.17365 0.24215 0.717 0.481
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4805 on 21 degrees of freedom
```

Multiple R-squared: 0.02614, Adjusted R-squared: -0.06661 F-statistic: 0.2818 on 2 and 21 DF, p-value: 0.7572





Levene's test for equality of variances

Checks if the mean magnitude of the residuals is equal across groups:

- 1. Obtain the residuals $\hat{\varepsilon}_{ij}$ from the one-way ANOVA model.
- 2. Treat the absolute values $|\hat{\varepsilon}_{ij}|$ of the residuals as *new* responses.
- 3. Test for equal means of the new responses with the F test.

So, do the ordinary F-test with the $|\hat{\varepsilon}_{ij}|$ as the responses.

Perception of slope example (cont)

Perform Levene's test:

```
ehat <- lm_slope$residuals
lm_levene <- lm(abs(ehat) ~ as.factor(trt))
summary(lm_levene)</pre>
```

```
Call:
lm(formula = abs(ehat) ~ as.factor(trt))
Residuals:
    Min
              10 Median
                               30
                                       Max
-0.29136 -0.12769 -0.04980 0.08219 0.79864
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.20980 0.09352 2.243 0.0358 *
as.factor(trt)X 0.05020 0.12805 0.392 0.6990
as.factor(trt)Y 0.33934 0.12469 2.721 0.0128 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2474 on 21 degrees of freedom
Multiple R-squared: 0.303, Adjusted R-squared: 0.2367
F-statistic: 4.565 on 2 and 21 DF, p-value: 0.02258
```

Can also use the leveneTest() function in the R package car.

We conclude that the variances are not equal across treatment groups.

References

- Dunnett, Charles W. 1964. "New Tables for Multiple Comparisons with a Control." *Biometrics* 20 (3): 482–91.
- Kutner, Michael H, Christopher J Nachtsheim, John Neter, and William Li. 2005. *Applied Linear Statistical Models*. McGraw-hill.
- Mohr, Donna L, William J Wilson, and Rudolf J Freund. 2021. Statistical Methods. Academic Press.