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Programming task data from Kutner et al. (2005)

Twenty-five people succeeded or failed at a programming task.
Months of programming experience was recorded for each person.

experience <- c(14,29,6,25,18,4,18,12,22,6,30,11,30,5,20,13,9,32,24,13,19,4,28,22,8)
success <- c¢(0,0,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,1,1)

Can we predict probability of success based on experience?
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plot(success ~ experience)
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Logistic regression model

Assume

1—m,

7

Y; ~ Bel’nOU“i(ﬂ-i)a 10g (7'('1) = ﬁo + 511‘1‘,

fort =1,...,n, where

P Y, is the response for observation i.
P 1, is the value of a predictor/covariate/explanatory variable for obs i.
P 7, is the probability of “success” for observation 1.

P 3, and f3; are slope and intercept parameters.

P 7;/(1 — ;) is the odds of “success” for obs i.

P log(m; /(1 —m,)) is the log-odds for obs i.

Logistic regression assumes the log-odds are linear in the predictor.
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Odds

Never tell me the O/ddl.'

P Let 7 be the probability of success.

P Then /(1 — ) is called the odds in favor of success.

a. If m=1/2 then 7/(1 —7) = 1. “One-to-one” odds of success.
b. If m=2/3 then m/(1 —m) = 2. Success 2x more likely than failure.

c. If m=1/4then /(1 —7) = 1/3. Failure 3x more likely than success.
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The logit and logistic transformations

P The transformation y = 15;; is called the logistic transformation.
P Its inverse x = log(lfyy) is called the logit transformation.

P We have

; ePotbiz;
log(l—ﬂ'i) :BO+/81$¢ <~ ﬂ'i:m
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x <- seq(-10,10,length=200)
y <- exp(x) / (1 + exp(x))
par (mfrow= c(1,2))
plot(y~x,type = "1")
plot(x~y,type = "1")

00 02 04 06 08 1.0

-10 -5 0 5 10

10

I I I I
04 06 08 10

y

7/44



Goals in logistic regression

Estimate (3, and ;.

Obtain fitted probabilities 74, ..., 7,,.

Build CI for 3; and test H,: 8, = 0.

Give interpretations of the estimated regression coefficients.
Check goodness of fit of the logistic regression model.

Add additional covariates...

S S e
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Maximum likelihood estimation in logistic regression

P We do not use least-squares to estimate 3, and 3;.

P Instead we use maximum likelihood estimators (MLEs).

P The MLEs are the parameter values giving the observed data the
highest possible probability.

P> Intercept b, and slope b, give to the observed data the probability

n

n(bo, b1 H (bos by 1—7T i(bg, by )]t %
i=1
eb0+b1$¢
with 7;(by,by) = ——F———— fori=1,...,n.

1+ ebotbiz;
P The MLEs f3,, 3; are the values of by, b, that maximize £,,(by,b;).
P £, (by,b,) is called the likelihood function.
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Computing the MLEs in logistic regression

P There is no “closed-form” expression for Bo and ﬁAl.
P One must find their values numerically, that is with an algorithm.
P More convenient to work with log £,, (b, by ), which is given by

gn(bm bl) = Z[Y;(bo + blmi) — log(l —+ eb0+b1xi)].
=1

P Newton's method is one way to find the maximizers of £, (by, b;).
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Programming task data (cont)

Newton-Raphson algorithm for computing 50 and BAI.




Generalized linear models

P The logistic regression model is in a class of models called GLMs.
P GLM stands for generalized linear model.

P> Poisson regression, binomial response regression, i.a. are GLMs too.
P Use gIm() function in R to obtain Bo and 51-
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Use glm() function with the option family = "binomial".

glm_out <- glm(success ~ experience, family = "binomial")
summary (glm_out)

Call:
glm(formula = success ~ experience, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.05970 1.25935 -2.430 0.0151 =*
experience 0.16149 0.06498 2.485 0.0129 =*

Signif. codes: 0 's*x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 34.296 on 24 degrees of freedom
Residual deviance: 25.425 on 23 degrees of freedom

AIC: 29.425

Number of Fisher Scoring iterations: 4
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x <- seq(min(experience) ,max(experience),length = 200)
pihat_x <- 1/(1 + exp( -(coef(glm_out) [1] + coef (glm_out) [2]*x)))

plot(success ~ experience); lines(pihat_x~x)
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Fitted probabilities

P Define the fitted probabilities as

R eﬁo""ﬁl%
i

n 1+ eEOJFBlIi

P For any value z we estimate the probability of “success” as

new'’

GBO +B1%new

ﬂ-new

- 1+ 6B0+lenew .
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Programming task data (cont)

plot(success ~ experience); lines(pihat_x~x)
points(glm_out$fitted.values~experience,pch = 19)
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Asymptotic distribution of slope estimator and Cl

P For large enough n, Bl is approximately Normal, such that

ﬁl /31 approx Normal (0’ 1) 7
Se{ﬁl}

where, setting w; = 7;(1 —7;) for i = 1,..., n, we may write

55{31} = [22;1 g — (Z?zl @i)71(2?11 7211'371‘)2]

P We can make an approximate (1 — «)100% Cl for f3; as

[N

B+ Za/2 se{f, -
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Programming task data (cont)

# Confidence interval for betal

pihat <- glm_out$fitted.values

blhat <- coef(glm_out) [2]

w <- pihat*(1-pihat)

se <- sqrt(1/(sum(wkexperience”2) - sum(w*experience) 2/sum(w)))
lo <- blhat - 1.96 * se

up <- blhat + 1.96 * se

c(lo,up)

experience experience
0.03412491 0.28884692
# CIs for both beta0 and betal automatically from glm_out

confint.default (glm_out)

2.5 % 97.5 %
(Intercept) -5.52797622 -0.5914155
experience  0.03412744 0.2888444
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Testing whether the slope coefficient is zero

To test Hy: 8, = 0 versus Hy: 3; # 0, do:
by

se{f1}

2. Reject Hyy at a if [ Zyos| > 24 0-

1. Compute Z, ., =

3. Obtain p value as 2(1 — P(Z > |Z, 1)), Z ~ Normal(0,1).

The summary () function on the glm() output prints this p value.
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Odds ratios

P Let 7, and 7, be success probs under an initial and an altered
condition, respectively.

» Then we call the ratio
m /(1 —m)
mo/ (1 =)
the odds ratio associated with the change from the initial to the
altered condition.

P The odds ratio is the factor by which the odds are multiplied when
the initial condition is changed to the altered condition.
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Interpreting the logistic regression parameters

P Let 7, and 7, be the “success” probabilities at x, and z, + 1.
P Then we have the two equations

L. log ( :?T(]) = Bo + Bizo

2. log ( 1:171 ) =By + Bz + 1)

P> Subtracting the first equation from the second gives

it () e (22) - e (241229

1—
P The quantity m/0=m) is called an odds ratio.

7o/ (1 — )

P So 3, is log of the odds ratio associated with a unit increase in .
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Odds ratio from a unit increase in x

P From the previous slide, we have

o _m/i=m)
o/ (1 — )
P Can build a Cl for €1 by exponentiating the ClI for j3;.
P Gives Cl for €1 as [e’él*za/?g‘s{gl},631”&/2@{31}].
P A unit increase in 2 multiplies the odds of success by the factor e’ .
P What if the Cl for e1 contains 17
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Programming task data (cont)

exp(confint.default(glm_out,parm = "experience"))

2.5 % 97.5%
experience 1.034716 1.334884

Each additional month of experience increases the odds of completing the
programming task by a factor of 1.035 to 1.335, with 95% confidence.
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Residuals for logistic regression

P Ordinary residuals Y; — 7; cannot be Normally distributed.
P In GLMs, one looks at special residuals called deviance residuals.
P In logistic regression, the deviance residuals are defined as

d; = sign(Y; — 7?1‘)\/_2[1/1 log7; + (1 = Y;) log(1 — ;)]

fore=1,...,n.
P These are not Normal either, but are useful for assessing model fit.
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Programming task data (cont)

plot(glm_out,which = 1)
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Residuals vs Fitted

025
020
© (¢}
o]
[0} o ° o
- T - T
O oo
° o
O o o)
%o
[e]
20
T T T T I
-2 -1 0 1 2

Predicted values
glm(success ~ experience)

25/44



Checking model fit with a simulated envelope

The simulated envelope method is described in Kutner et al. (2005):

P Fit the logistic regression model and obtain 7, ..., 7,,.
P> Obtain the deviance residuals; sort them as digy < dg) < <dp,.
P Generate many new data sets Y;* ~ Bernoulli(7;), i = 1, ..., n.

P For each new data set, obtain sorted dZ‘D < d&) < < dzkm.

P Plot d;) as well as the 0.025 and 0.975 quantiles and the mean of
the df;) Vi (it doesn’t matter what is chosen as the z-axis).

P The quantiles of the d?i) make a band. If the model fits, then the

cf(i) should lie within the band and close to the mean.

Asks: If the model is correct, how would the deviance residuals behave?
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Programming task data (cont)

library(glmtoolbox) # first time run install.packages("glmtoolbox")
envelope(glm_out,type = "deviance")

Normal QQ plot with simulated envelope
of deviance-type residuals
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experience2 <- (experience - mean(experience)) 2
envelope(glm(success ~ experience2, family = "binomial"),type = "deviance")

Normal QQ plot with simulated envelope
of deviance-type residuals
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German credit score data from Hofmann (1994)

Response is credit rating (good/bad), various predictors.

library(foreign) # credit-g dataset from https://www.openml.org/

link <- url("https://people.stat.sc.edu/gregorkb/data/dataset_31_credit-g.arff")
credg <- read.arff(link)

colnames (credg)

[1] "checking_status" "duration" "credit_history"

[4] "purpose" "credit_amount" "savings_status"

[7] "employment" "installment_commitment" "personal_status"
[10] " other_parties" "residence_since" "property_magnitude"
[13] "age" "other_payment_plans" "housing"

[16] "existing_credits" "job" "num_dependents"
[19] "own_telephone" "foreign_worker" "class"
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summary (credg[,1:3])

checking_status duration credit_history
<0 1274 Min. : 4.0 all paid : 49
>=200 : 63 1st Qu.:12.0 critical/other existing credit:293
0<=X<200 1269 Median :18.0 delayed previously : 88
no checking:394 Mean :20.9  existing paid :530
3rd Qu.:24.0 no credits/all paid : 40
Max. :72.0
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Logistic multiple regression model

Assume

1—m,

3

T
Y; ~ Bernoulli(m;), log < : ) = Bo + BrZin + -+ Bpip,

fori=1,...,n, where

P Y, is the response for observation i.
Z;1s .-, T;, are the values of the predictors for obs i.

>z, ;p are the val f the predictors for ob

P> 7, is the probability of “success” for observation i.

P 3, is an intercept and 3, ... , B, are slope parameters.

P 7;/(1 — ;) is the odds of “success” for obs i.

P log(m;/(1—m;)) is the log-odds for obs i.

So we assume the log-odds are a linear function of the predictors.
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Interpreting multiple logistic regression parameters

P Let T, and 7y ; be the “success” probabilities at z; and z; + 1
but with x, fixed for all k # j.

P Then we have the two equations
1. log ( :%7,) =B+ Zk%j Brzor + BTo;
2. log < 1:;) =B+ Zk%j Brxor + B;(xg; +1)

P> Subtracting the first equation from the second gives

7T1j/(1 - le) an B — 7T1j/(1 - le)
7703'/(1 - WOj)) d 7T0j/(1 - 770;‘) .

ﬂj ZIOg(

P So 3, is log of the odds ratio associated with a unit increase in T,
with all other predictors held fixed.
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German credit score data (cont)

glm_out <- glm(class - ., family = "binomial
summary (glm_out)

Call:

glm(formula = class ~ ., family = "binomial",
Coefficients:

(Intercept)

checking_status>=200
checking_status0<=X<200
checking_statusno checking
duration
credit_historycritical/other existing credit
credit_historydelayed previously
credit_historyexisting paid
credit_historyno credits/all paid
purposedomestic appliance
purposeeducation
purposefurniture/equipment
purposenew car

purposeother

purposeradio/tv

purposerepairs

purposeretraining

purposeused car

credit_amount
savings_status>=1000
savings_status100<=X<500
savings_status500<=X<1000
savings_statusno known savings
employment>=7

employment1<=X<4

employment4<=X<7
employmentunemployed
installment_commitment

', data =

data =

credg)

credg)

Estimate Std. Error z value

505e+00
657e-01
749e-01
712e+00
786e-02
1.579e+00
9.965e-01
7.295e-01
1.434e-01
.173e-01
.764e-01
5.152e-02
.401e-01
7.487e-01
1.516e-01
.237e-01
1.319e+00
9.264e-01
283e-04
1.339e+00
3.577e-01
3.761e-01
9.467e-01
2

1

7

R wo R

0
N

.097e-01
.169e-01
.641e-01
691e-02
301e-01

1.

DR WO AN R RO WNWWE DO WS ONN W

248e+00
692e-01
179e-01
322e-01
296e-03
381e-01
703e-01
852e-01
489e-01
041e-01
660e-01
543e-01
339e-01
998e-01
370e-01
933e-01
233e+00
409e-01
444e-05
249e-01
861e-01
011e-01
625e-01
947e-01
423e-01
051e-01
270e-01
828e-02

.206
.616
.720
.373
.997
.605
.119
.894
.261
.270
.666
.145
.216
.936
.450
.883
.070
.101
.887

551
250
938
607

.T12
.478

504
157
739

Pr(>lzl)
.227801
008905

66e-13
002724
000312
034105

793921
786976

884391
026668
349202
653002
377428
284625
035645
003894
010729
211130
348476
000310
L4T6718
632415
012271
875475
000185

OO0 0000000000000 O0O00OO0O0OO0OO0O R OO O

085400 .

058238 .

095718 .

*

x %
*

*
x
*

*
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Note that glm() estimates three coefficients for checking_status.

summary (credg$checking_status)

<0 >=200 0<=X<200 no checking
274 63 269 394

Numeric predictors to encode the levels of the categorical predictor:

200 < checking
otherwise

0 < checking < 200
otherwise

no checking
otherwise

8
-
N
|
—
O = O O

Likewise for other categorical predictors.
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Deviances replace error sums of squares in GLMs

P> The deviance is the sum of squared deviance residuals >

n
i=1"1
P In logistic regression the deviance can be computed as

Dev = —2Y [V;log#; + (1 —Y;)log(1 — 7,)].

i=1
P Full-reduced model test: Reject H: Bj=_0forall je€ D if
Dev(Reduced) — Dev(Full) > x? ,,

where s is the number of predictors in D (need large n).

d? .
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German credit score data (cont)

Test whether any level of checking status is important to the credit score.

credg_red <- credgl,-1] # remove checking_status column

glm_full <- glm(class ~ ., family = "binomial", data = credg)
glm_red <- glm(class ~ ., family = "binomial", data = credg_red)

p <- length(coef(glm_full)) - 1
s <- nlevels(credg$checking_status) - 1

1 - pchisq(glm_red$deviance - glm_full$deviance,s)

[1] 2.731149e-14
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Variable selection in logistic regression

P We may want to discard some of our predictors.

P> One way is to add/remove variables stepwise according to AIC.
P Can do this just as we did in multiple linear regression.

P Be cautious about making inferences after selecting a model.
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German credit score data (cont)

glm_all <- glm(class ~ ., family = "binomial", data = credg)
step_back <- step(glm_all,

direction = "backward",

scope = formula(glm_all),

criterion = "aic",

trace = 0) # suppress printed output
summary (step_back)

Call:
glm(formula = class - checking_status + duration + credit_history +
purpose + credit_amount + savings_status + installment_commitment +
personal_status + other_parties + age + other_payment_plans +
housing + own_telephone + foreign_worker, family = "binomial®,
data = credg)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 4.838e-01 1.017e+00  0.476 0.634362
checking_status>=200 1.024e+00 3.626e-01 2.824 0.004739 *x
checking_status0<=X<200 3.900e-01 2.121e-01 1.839 0.065928 .
checking_statusno checking 1.718e+00 2.281e-01 7.531 5.06e-14 *x*x*
duration -2.568e-02 8.940e-03 -2.872 0.004074 **
credit_historycritical/other existing credit 1.373e+00 4.041e-01 3.397 0.000680 *x*x*
credit_historydelayed previously 7.910e-01 4.488e-01 1.762 0.077985 .
credit_historyexisting paid 7.115e-01 3.788e-01 1.879 0.060305 .
credit_historyno credits/all paid -1.188e-01 5.268e-01 -0.225 0.821612
purposedomestic appliance -2.576e-01 7.763e-01 -0.332 0.740041
purposeeducation -9.262e-01 4.569e-01 -2.027 0.042628 *
purposefurniture/equipment -4.216e-02 3.415e-01 -0.123 0.901748
purposenew car -7.827e-01 3.272e-01 -2.392 0.016752 *
purposeother 6.523e-01 7.832e-01 0.833 0.404946
purposeradio/tv 1.368e-01 3.288e-01 0.416 0.677335
purposerepairs -6.402e-01 5.808e-01 -1.102 0.270365
purposeretraining 1.382e+00 1.240e+00 1.114 0.265228
purposeused car 8.246e-01 4.288e-01 0.054495 .

4. 0

credit_amount

294e-04 221e-05 002169 ** 38/44




envelope (step_back, type="deviance")

Observed quantiles

-1 0 1 2 3

-3

Normal QQ plot with simulated envelope
of deviance-type residuals

Expected quantiles
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Classification with the logistic regression model

Consider classifying the observations as 1 or 0 according to 7;:

P Choose a threshold ¢ € [0, 1] and make the classification
n={y Z:
O, Uy < c.
P Can compute observed true positive and false positive rates

_#Fi=1nv=1)

P Y, =1
_#HY,=1nY, =0}
Ty

P> Plotting TP against FP over all ¢ € [0, 1] creates the receiver
operating characteristic (ROC) curve.
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German credit score data (cont)

Compute TP and FP over a range of thresholds ¢. Plot ROC curve.

Y <- ifelse(credg$class == "good",1,0)
pi_hat <- step_back$fitted.values

nl <- sum(Y == 1)
n0 <- sum(Y == 0)

cc <- sort(c(0,pi_hat,1))
TP <- FP <- numeric(length(cc))
for(j in 1:length(cc)){

Yhat <- pi_hat >= cc[j]

TP[j] <- sum(Yhat == 1 & Y == 1) / nl
FP[j] <- sum(Yhat == 1 & Y == 0) / nO
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plot(TP ~ FP, type = "1", main = "ROC curve")
abline(0,1,1ty = 3)

ROC curve
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Can use ROC curves to compare models. *

ROC curves
o |
—
[o¢]
g
©
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< _| * —— Backwards stepwise model
© —— Model with age as only predictor
N
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o
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T T T T T T
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FP

1Best to evaluate model performance on a set of data not used in fitting the model.
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