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Programming task data from Kutner et al. (2005)

Twenty-five people succeeded or failed at a programming task.
Months of programming experience was recorded for each person.

experience <- c(14,29,6,25,18,4,18,12,22,6,30,11,30,5,20,13,9,32,24,13,19,4,28,22,8)
success <- c(0,0,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,1,1)

Can we predict probability of success based on experience?
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plot(success ~ experience)
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Logistic regression model

Assume

𝑌𝑖 ∼ Bernoulli(𝜋𝑖), log ( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖,

for 𝑖 = 1, … , 𝑛, where

▶ 𝑌𝑖 is the response for observation 𝑖.
▶ 𝑥𝑖 is the value of a predictor/covariate/explanatory variable for obs 𝑖.
▶ 𝜋𝑖 is the probability of “success” for observation 𝑖.
▶ 𝛽0 and 𝛽1 are slope and intercept parameters.
▶ 𝜋𝑖/(1 − 𝜋𝑖) is the odds of “success” for obs 𝑖.
▶ log(𝜋𝑖/(1 − 𝜋𝑖)) is the log-odds for obs 𝑖.

Logistic regression assumes the log-odds are linear in the predictor.
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Odds

▶ Let 𝜋 be the probability of success.
▶ Then 𝜋/(1 − 𝜋) is called the odds in favor of success.

a. If 𝜋 = 1/2 then 𝜋/(1 − 𝜋) = 1. “One-to-one” odds of success.
b. If 𝜋 = 2/3 then 𝜋/(1 − 𝜋) = 2. Success 2x more likely than failure.
c. If 𝜋 = 1/4 then 𝜋/(1 − 𝜋) = 1/3. Failure 3x more likely than success.
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The logit and logistic transformations

▶ The transformation 𝑦 = 𝑒𝑥
1+𝑒𝑥 is called the logistic transformation.

▶ Its inverse 𝑥 = log( 𝑦
1−𝑦 ) is called the logit transformation.

▶ We have

log ( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖 ⟺ 𝜋𝑖 = 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
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x <- seq(-10,10,length=200)
y <- exp(x) / (1 + exp(x))
par(mfrow= c(1,2))
plot(y~x,type = "l")
plot(x~y,type = "l")
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Goals in logistic regression

1. Estimate 𝛽0 and 𝛽1.
2. Obtain fitted probabilities ̂𝜋1, … , ̂𝜋𝑛.
3. Build CI for 𝛽1 and test 𝐻0: 𝛽1 = 0.
4. Give interpretations of the estimated regression coefficients.
5. Check goodness of fit of the logistic regression model.
6. Add additional covariates…
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Maximum likelihood estimation in logistic regression

▶ We do not use least-squares to estimate 𝛽0 and 𝛽1.
▶ Instead we use maximum likelihood estimators (MLEs).
▶ The MLEs are the parameter values giving the observed data the

highest possible probability.
▶ Intercept 𝑏0 and slope 𝑏1 give to the observed data the probability

ℒ𝑛(𝑏0, 𝑏1) =
𝑛

∏
𝑖=1

[𝜋𝑖(𝑏0, 𝑏1)]𝑌𝑖 [1 − 𝜋𝑖(𝑏0, 𝑏1)]1−𝑌𝑖

with 𝜋𝑖(𝑏0, 𝑏1) = 𝑒𝑏0+𝑏1𝑥𝑖

1 + 𝑒𝑏0+𝑏1𝑥𝑖
for 𝑖 = 1, … , 𝑛.

▶ The MLEs ̂𝛽0, ̂𝛽1 are the values of 𝑏0, 𝑏1 that maximize ℒ𝑛(𝑏0, 𝑏1).
▶ ℒ𝑛(𝑏0, 𝑏1) is called the likelihood function.
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Computing the MLEs in logistic regression

▶ There is no “closed-form” expression for ̂𝛽0 and ̂𝛽1.
▶ One must find their values numerically, that is with an algorithm.
▶ More convenient to work with log ℒ𝑛(𝑏0, 𝑏1), which is given by

ℓ𝑛(𝑏0, 𝑏1) =
𝑛

∑
𝑖=1

[𝑌𝑖(𝑏0 + 𝑏1𝑥𝑖) − log(1 + 𝑒𝑏0+𝑏1𝑥𝑖)].

▶ Newton’s method is one way to find the maximizers of ℓ𝑛(𝑏0, 𝑏1).
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Programming task data (cont)
Newton-Raphson algorithm for computing ̂𝛽0 and ̂𝛽1.
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Generalized linear models

▶ The logistic regression model is in a class of models called GLMs.
▶ GLM stands for generalized linear model.
▶ Poisson regression, binomial response regression, i.a. are GLMs too.
▶ Use glm() function in R to obtain ̂𝛽0 and ̂𝛽1.
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Use glm() function with the option family = "binomial".

glm_out <- glm(success ~ experience, family = "binomial")
summary(glm_out)

Call:
glm(formula = success ~ experience, family = "binomial")

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.05970 1.25935 -2.430 0.0151 *
experience 0.16149 0.06498 2.485 0.0129 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 34.296 on 24 degrees of freedom
Residual deviance: 25.425 on 23 degrees of freedom
AIC: 29.425

Number of Fisher Scoring iterations: 4
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x <- seq(min(experience),max(experience),length = 200)
pihat_x <- 1/(1 + exp( -(coef(glm_out)[1] + coef(glm_out)[2]*x)))
plot(success ~ experience); lines(pihat_x~x)
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Fitted probabilities

▶ Define the fitted probabilities as

̂𝜋𝑖 = 𝑒 ̂𝛽0+ ̂𝛽1𝑥𝑖

1 + 𝑒 ̂𝛽0+ ̂𝛽1𝑥𝑖
for 𝑖 = 1, … , 𝑛.

▶ For any value 𝑥new, we estimate the probability of “success” as

̂𝜋new = 𝑒 ̂𝛽0+ ̂𝛽1𝑥new

1 + 𝑒 ̂𝛽0+ ̂𝛽1𝑥new
.
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Programming task data (cont)
plot(success ~ experience); lines(pihat_x~x)
points(glm_out$fitted.values~experience,pch = 19)
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Asymptotic distribution of slope estimator and CI

▶ For large enough 𝑛, ̂𝛽1 is approximately Normal, such that

̂𝛽1 − 𝛽1
ŝe{ ̂𝛽1}

approx∼ Normal (0, 1) ,

where, setting 𝑤̂𝑖 = ̂𝜋𝑖(1 − ̂𝜋𝑖) for 𝑖 = 1, … , 𝑛, we may write

ŝe{ ̂𝛽1} = [∑𝑛
𝑖=1 𝑤̂𝑖𝑥2

𝑖 − (∑𝑛
𝑖=1 𝑤̂𝑖)−1(∑𝑛

𝑖=1 𝑤̂𝑖𝑥𝑖)2]− 1
2 .

▶ We can make an approximate (1 − 𝛼)100% CI for 𝛽1 as

̂𝛽1 ± 𝑧𝛼/2 ŝe{ ̂𝛽1}.
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Programming task data (cont)

# Confidence interval for beta1
pihat <- glm_out$fitted.values
b1hat <- coef(glm_out)[2]
w <- pihat*(1-pihat)
se <- sqrt(1/(sum(w*experience^2) - sum(w*experience)^2/sum(w)))
lo <- b1hat - 1.96 * se
up <- b1hat + 1.96 * se
c(lo,up)

experience experience
0.03412491 0.28884692

# CIs for both beta0 and beta1 automatically from glm_out
confint.default(glm_out)

2.5 % 97.5 %
(Intercept) -5.52797622 -0.5914155
experience 0.03412744 0.2888444
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Testing whether the slope coefficient is zero

To test 𝐻0: 𝛽1 = 0 versus 𝐻1: 𝛽1 ≠ 0, do:

1. Compute 𝑍test =
̂𝛽1

ŝe{ ̂𝛽1}
.

2. Reject 𝐻0 at 𝛼 if |𝑍test| > 𝑧𝛼/2.

3. Obtain p value as 2(1 − 𝑃(𝑍 > |𝑍test|)), 𝑍 ∼ Normal(0, 1).

The summary() function on the glm() output prints this p value.
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Odds ratios

▶ Let 𝜋0 and 𝜋1 be success probs under an initial and an altered
condition, respectively.

▶ Then we call the ratio
𝜋1/(1 − 𝜋1)
𝜋0/(1 − 𝜋0)

the odds ratio associated with the change from the initial to the
altered condition.

▶ The odds ratio is the factor by which the odds are multiplied when
the initial condition is changed to the altered condition.
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Interpreting the logistic regression parameters

▶ Let 𝜋0 and 𝜋1 be the “success” probabilities at 𝑥0 and 𝑥0 + 1.
▶ Then we have the two equations

1. log ( 𝜋0
1−𝜋0

) = 𝛽0 + 𝛽1𝑥0

2. log ( 𝜋1
1−𝜋1

) = 𝛽0 + 𝛽1(𝑥0 + 1)
▶ Subtracting the first equation from the second gives

𝛽1 = log ( 𝜋1
1 − 𝜋1

) − log ( 𝜋0
1 − 𝜋0

) = log (𝜋1/(1 − 𝜋1)
𝜋0/(1 − 𝜋0)) .

▶ The quantity 𝜋1/(1 − 𝜋1)
𝜋0/(1 − 𝜋0) is called an odds ratio.

▶ So 𝛽1 is log of the odds ratio associated with a unit increase in 𝑥.
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Odds ratio from a unit increase in x

▶ From the previous slide, we have

𝑒𝛽1 = 𝜋1/(1 − 𝜋1)
𝜋0/(1 − 𝜋0) .

▶ Can build a CI for 𝑒𝛽1 by exponentiating the CI for 𝛽1.
▶ Gives CI for 𝑒𝛽1 as [𝑒 ̂𝛽1−𝑧𝛼/2 ŝe{ ̂𝛽1}, 𝑒 ̂𝛽1+𝑧𝛼/2 ŝe{ ̂𝛽1}].
▶ A unit increase in 𝑥 multiplies the odds of success by the factor 𝑒𝛽1 .
▶ What if the CI for 𝑒𝛽1 contains 1?
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Programming task data (cont)

exp(confint.default(glm_out,parm = "experience"))

2.5 % 97.5 %
experience 1.034716 1.334884

Each additional month of experience increases the odds of completing the
programming task by a factor of 1.035 to 1.335, with 95% confidence.
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Residuals for logistic regression

▶ Ordinary residuals 𝑌𝑖 − ̂𝜋𝑖 cannot be Normally distributed.
▶ In GLMs, one looks at special residuals called deviance residuals.
▶ In logistic regression, the deviance residuals are defined as

̂𝑑𝑖 = sign(𝑌𝑖 − ̂𝜋𝑖)√−2[𝑌𝑖 log ̂𝜋𝑖 + (1 − 𝑌𝑖) log(1 − ̂𝜋𝑖)]

for 𝑖 = 1, … , 𝑛.
▶ These are not Normal either, but are useful for assessing model fit.
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Programming task data (cont)
plot(glm_out,which = 1)
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Checking model fit with a simulated envelope

The simulated envelope method is described in Kutner et al. (2005):

▶ Fit the logistic regression model and obtain ̂𝜋1, … , ̂𝜋𝑛.
▶ Obtain the deviance residuals; sort them as ̂𝑑(1) < ̂𝑑(2) < ⋯ < ̂𝑑(𝑛).
▶ Generate many new data sets 𝑌 ∗

𝑖 ∼ Bernoulli( ̂𝜋𝑖), 𝑖 = 1, … , 𝑛.
▶ For each new data set, obtain sorted ̂𝑑∗

(1) < ̂𝑑∗
(2) < ⋯ < ̂𝑑∗

(𝑛).
▶ Plot ̂𝑑(𝑖) as well as the 0.025 and 0.975 quantiles and the mean of

the ̂𝑑∗
(𝑖) ∀ 𝑖 (it doesn’t matter what is chosen as the 𝑥-axis).

▶ The quantiles of the ̂𝑑∗
(𝑖) make a band. If the model fits, then the

̂𝑑(𝑖) should lie within the band and close to the mean.

Asks: If the model is correct, how would the deviance residuals behave?
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Programming task data (cont)
library(glmtoolbox) # first time run install.packages("glmtoolbox")
envelope(glm_out,type = "deviance")
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experience2 <- (experience - mean(experience))^2
envelope(glm(success ~ experience2, family = "binomial"),type = "deviance")

−2 −1 0 1 2

−
1

0
1

2

Normal QQ plot with simulated envelope
 of deviance−type residuals

Expected quantiles

O
bs

er
ve

d 
qu

an
til

es

28 / 44



German credit score data from Hofmann (1994)

Response is credit rating (good/bad), various predictors.

library(foreign) # credit-g dataset from https://www.openml.org/
link <- url("https://people.stat.sc.edu/gregorkb/data/dataset_31_credit-g.arff")
credg <- read.arff(link)
colnames(credg)

[1] "checking_status" "duration" "credit_history"
[4] "purpose" "credit_amount" "savings_status"
[7] "employment" "installment_commitment" "personal_status"

[10] "other_parties" "residence_since" "property_magnitude"
[13] "age" "other_payment_plans" "housing"
[16] "existing_credits" "job" "num_dependents"
[19] "own_telephone" "foreign_worker" "class"
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summary(credg[,1:3])

checking_status duration credit_history
<0 :274 Min. : 4.0 all paid : 49
>=200 : 63 1st Qu.:12.0 critical/other existing credit:293
0<=X<200 :269 Median :18.0 delayed previously : 88
no checking:394 Mean :20.9 existing paid :530

3rd Qu.:24.0 no credits/all paid : 40
Max. :72.0
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Logistic multiple regression model

Assume

𝑌𝑖 ∼ Bernoulli(𝜋𝑖), log ( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝,

for 𝑖 = 1, … , 𝑛, where

▶ 𝑌𝑖 is the response for observation 𝑖.
▶ 𝑥𝑖1, … , 𝑥𝑖𝑝 are the values of the predictors for obs 𝑖.
▶ 𝜋𝑖 is the probability of “success” for observation 𝑖.
▶ 𝛽0 is an intercept and 𝛽1, … , 𝛽𝑝 are slope parameters.
▶ 𝜋𝑖/(1 − 𝜋𝑖) is the odds of “success” for obs 𝑖.
▶ log(𝜋𝑖/(1 − 𝜋𝑖)) is the log-odds for obs 𝑖.

So we assume the log-odds are a linear function of the predictors.
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Interpreting multiple logistic regression parameters

▶ Let 𝜋0𝑗 and 𝜋1𝑗 be the “success” probabilities at 𝑥0𝑗 and 𝑥0𝑗 + 1
but with 𝑥0𝑘 fixed for all 𝑘 ≠ 𝑗.

▶ Then we have the two equations
1. log ( 𝜋0𝑗

1−𝜋0𝑗
) = 𝛽0 + ∑𝑘≠𝑗 𝛽𝑘𝑥0𝑘 + 𝛽𝑗𝑥0𝑗

2. log ( 𝜋1𝑗
1−𝜋1𝑗

) = 𝛽0 + ∑𝑘≠𝑗 𝛽𝑘𝑥0𝑘 + 𝛽𝑗(𝑥0𝑗 + 1)

▶ Subtracting the first equation from the second gives

𝛽𝑗 = log (𝜋1𝑗/(1 − 𝜋1𝑗)
𝜋0𝑗/(1 − 𝜋0𝑗)

) and 𝑒𝛽𝑗 = 𝜋1𝑗/(1 − 𝜋1𝑗)
𝜋0𝑗/(1 − 𝜋0𝑗)

.

▶ So 𝛽1 is log of the odds ratio associated with a unit increase in 𝑥𝑗
with all other predictors held fixed.
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German credit score data (cont)
glm_out <- glm(class ~ ., family = "binomial", data = credg)
summary(glm_out)

Call:
glm(formula = class ~ ., family = "binomial", data = credg)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.505e+00 1.248e+00 1.206 0.227801
checking_status>=200 9.657e-01 3.692e-01 2.616 0.008905 **
checking_status0<=X<200 3.749e-01 2.179e-01 1.720 0.085400 .
checking_statusno checking 1.712e+00 2.322e-01 7.373 1.66e-13 ***
duration -2.786e-02 9.296e-03 -2.997 0.002724 **
credit_historycritical/other existing credit 1.579e+00 4.381e-01 3.605 0.000312 ***
credit_historydelayed previously 9.965e-01 4.703e-01 2.119 0.034105 *
credit_historyexisting paid 7.295e-01 3.852e-01 1.894 0.058238 .
credit_historyno credits/all paid 1.434e-01 5.489e-01 0.261 0.793921
purposedomestic appliance -2.173e-01 8.041e-01 -0.270 0.786976
purposeeducation -7.764e-01 4.660e-01 -1.666 0.095718 .
purposefurniture/equipment 5.152e-02 3.543e-01 0.145 0.884391
purposenew car -7.401e-01 3.339e-01 -2.216 0.026668 *
purposeother 7.487e-01 7.998e-01 0.936 0.349202
purposeradio/tv 1.515e-01 3.370e-01 0.450 0.653002
purposerepairs -5.237e-01 5.933e-01 -0.883 0.377428
purposeretraining 1.319e+00 1.233e+00 1.070 0.284625
purposeused car 9.264e-01 4.409e-01 2.101 0.035645 *
credit_amount -1.283e-04 4.444e-05 -2.887 0.003894 **
savings_status>=1000 1.339e+00 5.249e-01 2.551 0.010729 *
savings_status100<=X<500 3.577e-01 2.861e-01 1.250 0.211130
savings_status500<=X<1000 3.761e-01 4.011e-01 0.938 0.348476
savings_statusno known savings 9.467e-01 2.625e-01 3.607 0.000310 ***
employment>=7 2.097e-01 2.947e-01 0.712 0.476718
employment1<=X<4 1.159e-01 2.423e-01 0.478 0.632415
employment4<=X<7 7.641e-01 3.051e-01 2.504 0.012271 *
employmentunemployed -6.691e-02 4.270e-01 -0.157 0.875475
installment_commitment -3.301e-01 8.828e-02 -3.739 0.000185 ***
personal_statusmale div/sep -2.755e-01 3.865e-01 -0.713 0.476040
personal_statusmale mar/wid 9.162e-02 3.118e-01 0.294 0.768908
personal_statusmale single 5.406e-01 2.102e-01 2.572 0.010113 *
other_partiesguarantor 1.415e+00 5.685e-01 2.488 0.012834 *
other_partiesnone 4.360e-01 4.101e-01 1.063 0.287700
residence_since -4.776e-03 8.641e-02 -0.055 0.955920
property_magnitudelife insurance -8.690e-02 2.313e-01 -0.376 0.707115
property_magnitudeno known property -5.359e-01 4.017e-01 -1.334 0.182211
property_magnitudereal estate 1.945e-01 2.360e-01 0.824 0.409743
age 1.454e-02 9.222e-03 1.576 0.114982
other_payment_plansnone 6.463e-01 2.391e-01 2.703 0.006871 **
other_payment_plansstores 1.232e-01 4.119e-01 0.299 0.764878
housingown -2.402e-01 4.503e-01 -0.534 0.593687
housingrent -6.839e-01 4.770e-01 -1.434 0.151657
existing_credits -2.721e-01 1.895e-01 -1.436 0.151109
jobskilled -7.524e-02 2.845e-01 -0.264 0.791419
jobunemp/unskilled non res 4.795e-01 6.623e-01 0.724 0.469086
jobunskilled resident -5.666e-02 3.501e-01 -0.162 0.871450
num_dependents -2.647e-01 2.492e-01 -1.062 0.288249
own_telephoneyes 3.000e-01 2.013e-01 1.491 0.136060
foreign_workeryes -1.392e+00 6.258e-01 -2.225 0.026095 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.73 on 999 degrees of freedom
Residual deviance: 895.82 on 951 degrees of freedom
AIC: 993.82

Number of Fisher Scoring iterations: 5
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Note that glm() estimates three coefficients for checking_status.

summary(credg$checking_status)

<0 >=200 0<=X<200 no checking
274 63 269 394

Numeric predictors to encode the levels of the categorical predictor:

𝑥𝑖1 = { 1 200 ≤ checking
0 otherwise

𝑥𝑖2 = { 1 0 ≤ checking < 200
0 otherwise

𝑥𝑖3 = { 1 no checking
0 otherwise

Likewise for other categorical predictors.
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Deviances replace error sums of squares in GLMs

▶ The deviance is the sum of squared deviance residuals ∑𝑛
𝑖=1

̂𝑑2
𝑖 .

▶ In logistic regression the deviance can be computed as

Dev = −2
𝑛

∑
𝑖=1

[𝑌𝑖 log ̂𝜋𝑖 + (1 − 𝑌𝑖) log(1 − ̂𝜋𝑖)].

▶ Full-reduced model test: Reject 𝐻0: 𝛽𝑗 = 0 for all 𝑗 ∈ 𝐷 if

Dev(Reduced) − Dev(Full) > 𝜒2
𝑠,𝛼,

where 𝑠 is the number of predictors in 𝐷 (need large 𝑛).
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German credit score data (cont)

Test whether any level of checking status is important to the credit score.

credg_red <- credg[,-1] # remove checking_status column

glm_full <- glm(class ~ ., family = "binomial", data = credg)
glm_red <- glm(class ~ ., family = "binomial", data = credg_red)

p <- length(coef(glm_full)) - 1
s <- nlevels(credg$checking_status) - 1

1 - pchisq(glm_red$deviance - glm_full$deviance,s)

[1] 2.731149e-14
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Variable selection in logistic regression

▶ We may want to discard some of our predictors.
▶ One way is to add/remove variables stepwise according to AIC.
▶ Can do this just as we did in multiple linear regression.
▶ Be cautious about making inferences after selecting a model.
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German credit score data (cont)
glm_all <- glm(class ~ ., family = "binomial", data = credg)
step_back <- step(glm_all,

direction = "backward",
scope = formula(glm_all),
criterion = "aic",
trace = 0) # suppress printed output

summary(step_back)

Call:
glm(formula = class ~ checking_status + duration + credit_history +

purpose + credit_amount + savings_status + installment_commitment +
personal_status + other_parties + age + other_payment_plans +
housing + own_telephone + foreign_worker, family = "binomial",
data = credg)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.838e-01 1.017e+00 0.476 0.634362
checking_status>=200 1.024e+00 3.626e-01 2.824 0.004739 **
checking_status0<=X<200 3.900e-01 2.121e-01 1.839 0.065928 .
checking_statusno checking 1.718e+00 2.281e-01 7.531 5.05e-14 ***
duration -2.568e-02 8.940e-03 -2.872 0.004074 **
credit_historycritical/other existing credit 1.373e+00 4.041e-01 3.397 0.000680 ***
credit_historydelayed previously 7.910e-01 4.488e-01 1.762 0.077985 .
credit_historyexisting paid 7.115e-01 3.788e-01 1.879 0.060305 .
credit_historyno credits/all paid -1.188e-01 5.268e-01 -0.225 0.821612
purposedomestic appliance -2.576e-01 7.763e-01 -0.332 0.740041
purposeeducation -9.262e-01 4.569e-01 -2.027 0.042628 *
purposefurniture/equipment -4.216e-02 3.415e-01 -0.123 0.901748
purposenew car -7.827e-01 3.272e-01 -2.392 0.016752 *
purposeother 6.523e-01 7.832e-01 0.833 0.404946
purposeradio/tv 1.368e-01 3.288e-01 0.416 0.677335
purposerepairs -6.402e-01 5.808e-01 -1.102 0.270365
purposeretraining 1.382e+00 1.240e+00 1.114 0.265228
purposeused car 8.246e-01 4.288e-01 1.923 0.054495 .
credit_amount -1.294e-04 4.221e-05 -3.066 0.002169 **
savings_status>=1000 1.289e+00 5.072e-01 2.542 0.011008 *
savings_status100<=X<500 3.282e-01 2.767e-01 1.186 0.235477
savings_status500<=X<1000 4.304e-01 3.933e-01 1.094 0.273900
savings_statusno known savings 9.628e-01 2.570e-01 3.746 0.000179 ***
installment_commitment -3.299e-01 8.554e-02 -3.857 0.000115 ***
personal_statusmale div/sep -2.872e-01 3.763e-01 -0.763 0.445327
personal_statusmale mar/wid 1.297e-01 3.061e-01 0.424 0.671803
personal_statusmale single 5.356e-01 1.975e-01 2.712 0.006686 **
other_partiesguarantor 1.528e+00 5.581e-01 2.737 0.006193 **
other_partiesnone 4.874e-01 3.997e-01 1.220 0.222648
age 1.309e-02 8.398e-03 1.559 0.118967
other_payment_plansnone 6.995e-01 2.350e-01 2.976 0.002916 **
other_payment_plansstores 7.864e-02 4.033e-01 0.195 0.845394
housingown 2.918e-01 2.887e-01 1.011 0.312127
housingrent -1.497e-01 3.411e-01 -0.439 0.660793
own_telephoneyes 2.794e-01 1.842e-01 1.516 0.129394
foreign_workeryes -1.382e+00 6.207e-01 -2.227 0.025925 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.7 on 999 degrees of freedom
Residual deviance: 910.5 on 964 degrees of freedom
AIC: 982.5

Number of Fisher Scoring iterations: 5
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envelope(step_back,type="deviance")
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Classification with the logistic regression model

Consider classifying the observations as 1 or 0 according to ̂𝜋𝑖:

▶ Choose a threshold 𝑐 ∈ [0, 1] and make the classification

̂𝑌𝑖 = { 1, ̂𝜋𝑖 ≥ 𝑐
0, ̂𝜋𝑖 < 𝑐.

▶ Can compute observed true positive and false positive rates

TP = #{ ̂𝑌𝑖 = 1 ∩ 𝑌𝑖 = 1}
#{𝑌𝑖 = 1}

FP = #{ ̂𝑌𝑖 = 1 ∩ 𝑌𝑖 = 0}
#{𝑌𝑖 = 0} .

▶ Plotting TP against FP over all 𝑐 ∈ [0, 1] creates the receiver
operating characteristic (ROC) curve.
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German credit score data (cont)

Compute TP and FP over a range of thresholds 𝑐. Plot ROC curve.

Y <- ifelse(credg$class == "good",1,0)
pi_hat <- step_back$fitted.values

n1 <- sum(Y == 1)
n0 <- sum(Y == 0)

cc <- sort(c(0,pi_hat,1))
TP <- FP <- numeric(length(cc))
for(j in 1:length(cc)){

Yhat <- pi_hat >= cc[j]
TP[j] <- sum(Yhat == 1 & Y == 1) / n1
FP[j] <- sum(Yhat == 1 & Y == 0) / n0

}
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plot(TP ~ FP, type = "l", main = "ROC curve")
abline(0,1,lty = 3)
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Can use ROC curves to compare models. 1
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1Best to evaluate model performance on a set of data not used in fitting the model.
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