

STAT 516 Lec 12

Logistic regression

Karl Gregory

2025-04-22

Programming task data from Kutner et al. (2005)

Twenty-five people succeeded or failed at a programming task.

Months of programming experience was recorded for each person.

```
experience <- c(14,29,6,25,18,4,18,12,22,6,30,11,30,5,20,13,9,32,24,13,19,4,28,22,8) success <- c(0,0,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,1)
```

Can we predict probability of success based on experience?

plot(success ~ experience)



Stat 515/509

Bernoull: random variable:

p = success probability

Logistic regression model

Assume
$$Y_i \sim \text{Bernoulli}(\pi_i), \quad \frac{\log \left(\frac{\pi_i}{1-\pi_i}\right)}{\log \left(\frac{\pi_i}{1-\pi_i}\right)} = \frac{\beta_0 + \beta_1 x_i}{\log \left(\frac{\pi_i}{1-\pi_i}\right)}$$
 for $i=1,\dots,n$, where

- Y_i is the response for observation i.
- x_i is the value of a predictor/covariate/explanatory variable for obs i.
- π_i is the probability of "success" for observation i.
- β_0 and β_1 are slope and intercept parameters.
- $\blacktriangleright \pi_i/(1-\pi_i)$ is the odds of "success" for obs i.
- $\log(\pi_i/(1-\pi_i))$ is the log-odds for obs i.

Logistic regression assumes the log-odds are linear in the predictor.

Odds: If
$$\pi$$
 is probe of success, We call $\frac{\pi}{1-\pi}$ the odds in form of success. Fig. If $\pi = \frac{1}{2}$, then $\frac{\pi}{1-\pi} = \frac{1}{2} = 2$. One to one odds

If
$$\pi = \frac{2}{3}$$
 then $\frac{\pi}{1-\pi} = \frac{2/3}{1-\frac{3}{3}} = 2$ so some six $2x$ man likely then f_{0} : In

What volum can the odds ITT take? We have $\pi \in (0,1)$.

We have $T \in (0, \infty)$.

What about 1.3 (TT)?

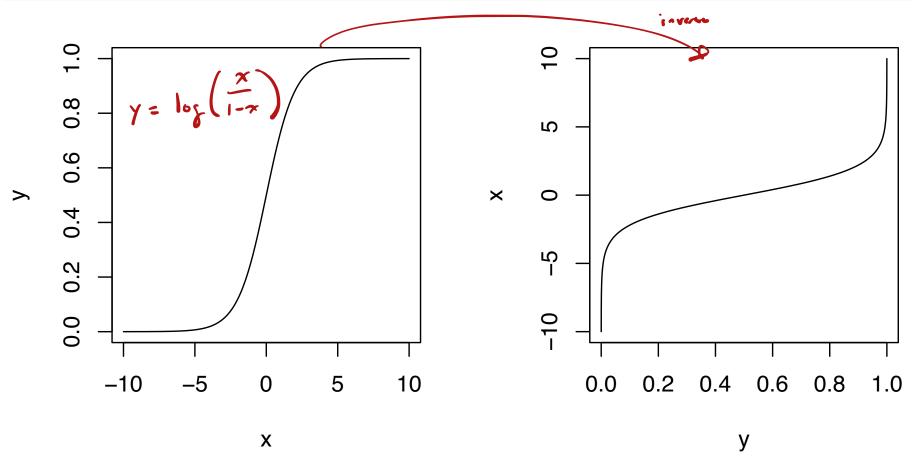
We how $\log\left(\frac{T_1}{1-T_1}\right) \in (-\omega, \infty)$

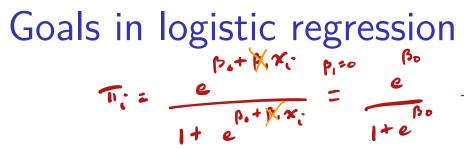
The logit and logistic transformations

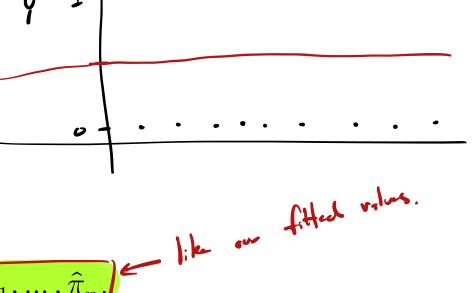
- The transformation $y = \frac{e^x}{1+e^x}$ is called the <u>logistic</u> transformation.
- Its inverse $x = \log(\frac{y}{1-y})$ is called the logit transformation.
- We have

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_i \iff \pi_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

```
x <- seq(-10,10,length=200)
y <- exp(x) / (1 + exp(x))
par(mfrow= c(1,2))
plot(y~x,type = "l")
plot(x~y,type = "l")</pre>
```

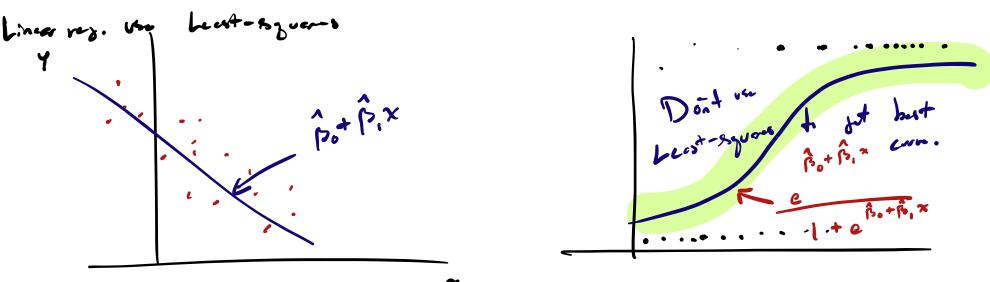






Estimate β_0 and β_1 .

- Σ Obtain fitted probabilities $\hat{\pi}_1, \dots, \hat{\pi}_n$
- We build CI for β_1 and test H_0 : $\beta_1 = 0$.
- W. Give interpretations of the estimated regression coefficients.
- 5. Check goodness of fit of the logistic regression model.
- 6. Add additional covariates...



Maximum likelihood estimation in logistic regression

- lacksquare We do not use least-squares to estimate eta_0 and eta_1 .
- Instead we use maximum likelihood estimators (MLEs).
- The MLEs are the parameter values giving the observed data the highest possible probability.
- Intercept b_0 and slope b_1 give to the observed data the probability

$$\text{P(Y_i=Y_i^{old},...,Y_i=Y_n^{old})} = \mathcal{L}_n(b_0,b_1) = \prod_{i=1}^n [\pi_i(b_0,b_1)]^{Y_i} [1-\pi_i(b_0,b_1)]^{1-Y_i}$$

with
$$\pi_i(b_0,b_1) = \frac{e^{b_0+b_1x_i}}{1+e^{b_0+b_1x_i}}$$
 for $i=1,\dots,n$.

- The MLEs $\hat{\beta}_0$, $\hat{\beta}_1$ are the values of b_0 , b_1 that maximize $\mathcal{L}_n(b_0,b_1)$.
- \blacktriangleright $\mathcal{L}_n(b_0,b_1)$ is called the likelihood function.

Computing the MLEs in logistic regression

Simple line regression:
$$\hat{\beta}_{0} = \overline{\Psi}_{0} - \hat{\beta}_{0} \overline{\chi}_{0}$$

$$\hat{\beta}_{1} = \underbrace{\overline{\xi}_{0}}_{1} (\underline{\chi}_{0} - \overline{\psi}_{0}) (\underline{\chi}_{0} - \overline{\psi}_{0})$$

$$\underline{\hat{\zeta}_{0}}_{1} (\underline{\chi}_{0} - \overline{\psi}_{0})^{2}$$

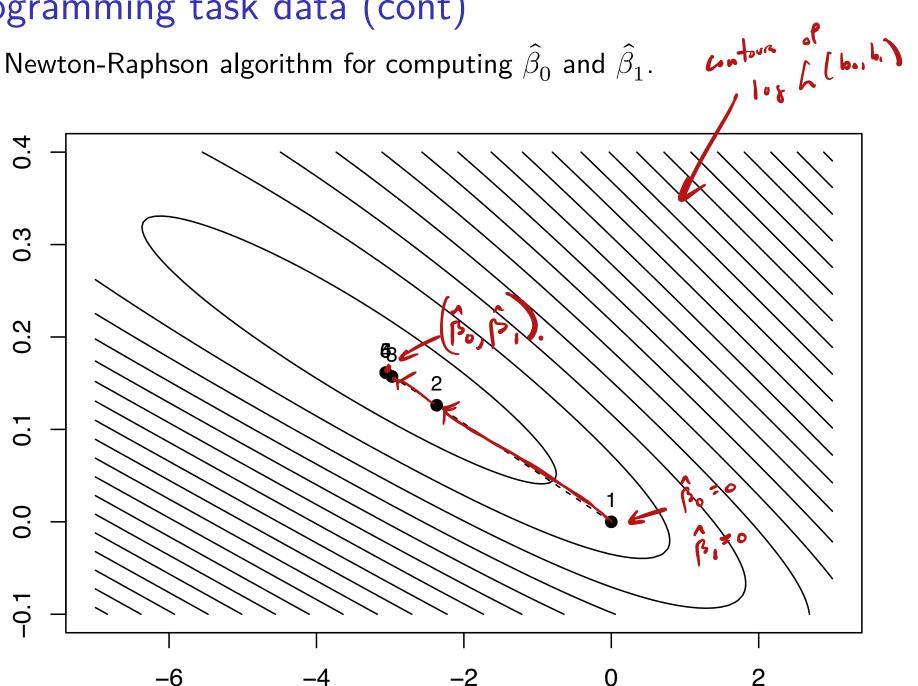
$$\vdots$$

- lacksquare There is no "closed-form" expression for \hat{eta}_0 and \hat{eta}_1 .
- One must find their values numerically, that is with an algorithm.
- More convenient to work with $\log \mathcal{L}_n(b_0, b_1)$, which is given by

$$\ell_n(b_0,b_1) = \sum_{i=1}^n [Y_i(b_0+b_1x_i) - \log(1+e^{b_0+b_1x_i})].$$

Newton's method is one way to find the maximizers of $\ell_n(b_0,b_1)$.

Programming task data (cont)



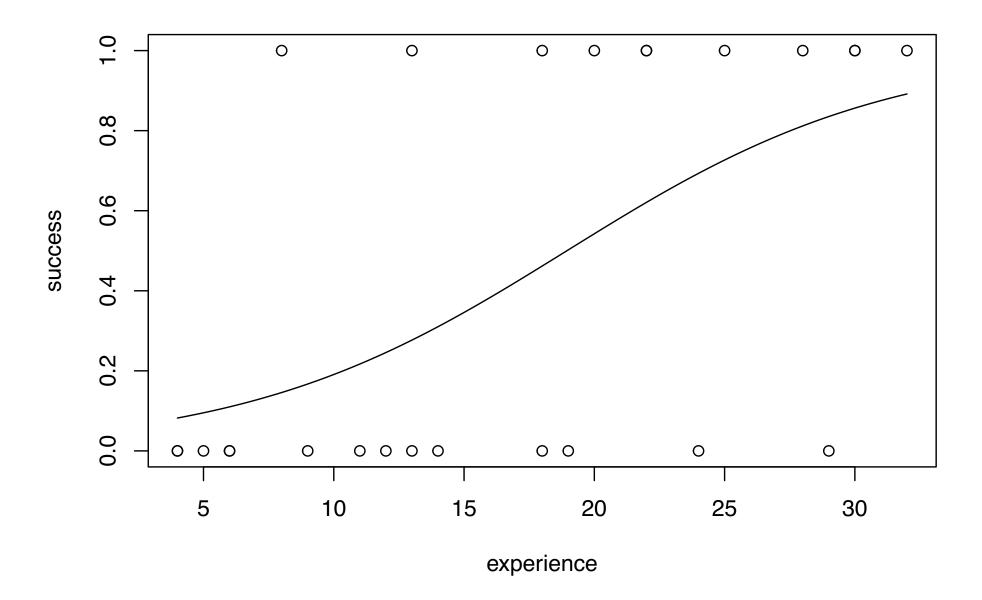
Generalized linear models

- The logistic regression model is in a class of models called GLMs.
- ► GLM stands for generalized linear model.
- Poisson regression, binomial response regression, i.a. are GLMs too.
- Use glm() function in R to obtain \hat{eta}_0 and \hat{eta}_1 .

Use glm() function with the option family = "binomial".

```
glm_out <- glm(success ~ experience, family = "binomial")</pre>
summary(glm_out)
Call:
glm(formula = success ~ experience, family = "binomial")
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.05970
                       1.25935 - 2.430
                                         0.0151 *
experience 0.16149
                       0.06498
                                 2.485
                                         0.0129 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 34.296 on 24 degrees of freedom
Residual deviance: 25.425 on 23 degrees of freedom
                                           p-value for text-p Ho: Pi=0.
AIC: 29.425
Number of Fisher Scoring iterations: 4
```

```
x <- seq(min(experience), max(experience), length = 200)
pihat_x <- 1/(1 + exp( -(coef(glm_out)[1] + coef(glm_out)[2]*x)))
plot(success ~ experience); lines(pihat_x~x)</pre>
```



Fitted probabilities

Define the fitted probabilities as

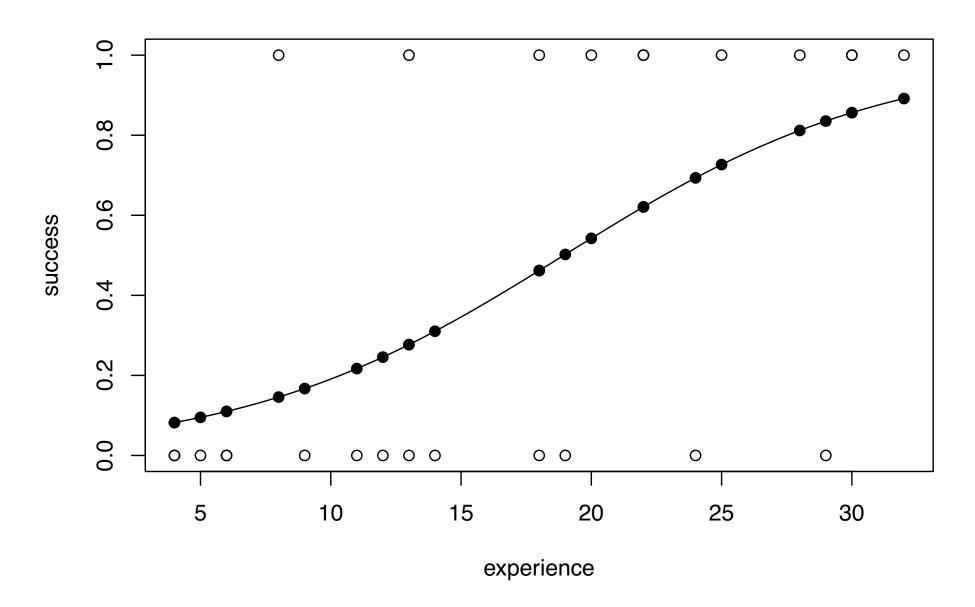
$$\hat{\pi}_i = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_i}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_i}} \quad \text{for} \quad i = 1, \dots, n.$$

For any value x_{new} , we estimate the probability of "success" as

$$\hat{\pi}_{\text{new}} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_{\text{new}}}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_{\text{new}}}}.$$

Programming task data (cont)

```
plot(success ~ experience); lines(pihat_x~x)
points(glm_out$fitted.values~experience,pch = 19)
```



Asymptotic distribution of slope estimator and CI

For large enough n, $\hat{\beta}_1$ is approximately Normal, such that

$$\frac{\hat{\beta}_1 - \beta_1}{\widehat{\operatorname{se}}\{\hat{\beta}_1\}} \overset{\operatorname{approx}}{\sim} \operatorname{Normal}\left(0, 1\right),$$

$$\operatorname{"se"} \operatorname{standerd} \operatorname{error}$$

where, setting $\hat{w}_i = \hat{\pi}_i (1 - \hat{\pi}_i)$ for $i = 1, \dots, n$, we may write

$$\widehat{\operatorname{se}}\{\widehat{\beta}_1\} = \left[\sum_{i=1}^n \widehat{w}_i x_i^2 - (\sum_{i=1}^n \widehat{w}_i)^{-1} (\sum_{i=1}^n \widehat{w}_i x_i)^2\right]^{-\frac{1}{2}}.$$

We can make an approximate (1-lpha)100% CI for eta_1 as

$$\hat{\beta}_1 \pm z_{\alpha/2} \ \widehat{\operatorname{se}}\{\hat{\beta}_1\}.$$

Programming task data (cont)

```
Confidence interval for beta1
pihat <- glm_out$fitted.values</pre>
b1hat <- coef(glm_out)[2]</pre>
w <- pihat*(1-pihat)</pre>
se <- sqrt(1/(sum(w*experience^2) - sum(w*experience)^2/sum(w)))</pre>
lo <- b1hat - 1.96 * se
up <- b1hat + 1.96 * se
c(lo,up)
experience experience
0.03412491 0.28884692
# CIs for both beta0 and beta1 automatically from glm_out
confint.default(glm_out)
                                         With 75% confidence

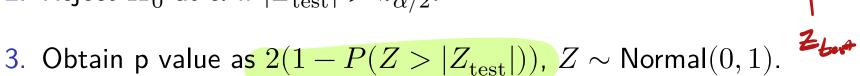
Pr 15 in [0.034, 0.289]
                   2.5 %
                          97.5 %
(Intercept) -5.52797622 -0.5914155
experience 0.03412744 0.2888444
```

17/39

Testing whether the slope coefficient is zero

To test H_0 : $\beta_1=0$ versus H_1 : $\beta_1\neq 0$, do:

- 1. Compute $Z_{\text{test}} = \frac{\hat{\beta}_1 0}{\widehat{\text{se}}\{\hat{\beta}_1\}}$
- 2. Reject H_0 at α if $|Z_{\text{test}}| > z_{\alpha/2}$.



The summary() function on the glm() output prints this p value.

N WIN

Odds and odds ratios

$$\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right) = \beta_{0} + \beta_{1} \times \alpha_{i}$$

- Let π be the probability of success.
- Then $\pi/(1-\pi)$ is called the odds in favor of success.
 - a. If $\pi = 1/2$ then $\pi/(1-\pi) = 1$. "One-to-one" odds of success.
 - b. If $\pi = 2/3$ then $\pi/(1-\pi) = 2$. Success 2x more likely than failure.
 - c. If $\pi = 1/4$ then $\pi/(1-\pi) = 1/3$. Failure 3x more likely than success.
- Let π_0 and π_1 be success probs under an initial and an altered condition, respectively.
- Then $\frac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)}$ is called the odds ratio
- The odds ratio is the factor by which the odds are multiplied when the initial condition is changed to the altered condition.

Interpreting the logistic regression parameters

one unit increase in The

- Let π_0 and π_1 be the "success" probabilities at x_0 and x_0+1 .
- Then we have the two equations

1.
$$\log\left(\frac{\pi_0}{1-\pi_0}\right) = \beta_0 + \beta_1 x_0$$

2. $\log\left(\frac{\pi_1}{1-\pi_1}\right) = \beta_0 + \beta_1 (x_0 + 1)$

β·+β·(x0+1) - (β·+β·x) = β·

odds ratio

Subtracting the first equation from the second gives

$$\beta_1 = \log\left(\frac{\pi_1}{1-\pi_1}\right) - \log\left(\frac{\pi_0}{1-\pi_0}\right) = \log\left(\frac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)}\right).$$

- The quantity $\frac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)}$ is called an odds ratio.
- So β_1 is log of the odds ratio associated with a unit increase in x.

Odds ratio from a unit increase in x

$$\beta_{1} = 100 \left(\frac{\pi_{1}/(1-\pi_{1})}{\pi_{0}/(1-\pi_{0})} \right) <=> \frac{\pi_{1}/(1-\pi_{1})}{\pi_{0}/(1-\pi_{0})}$$

From the previous slide, we have

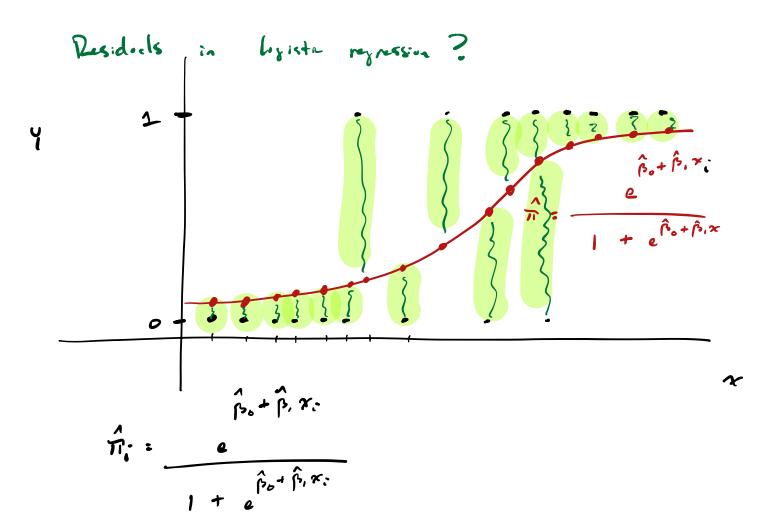
$$e^{\beta_1} = \frac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)}.$$

- lacksquare Can build a CI for e^{eta_1} by exponentiating the CI for eta_1 .
- $\qquad \qquad \text{Gives CI for } e^{\beta_1} \text{ as } \big[\underline{e^{\hat{\beta}_1 z_{\alpha/2}\widehat{\operatorname{se}}\{\hat{\beta}_1\}}}, \underline{e^{\hat{\beta}_1 + z_{\alpha/2}\widehat{\operatorname{se}}\{\hat{\beta}_1\}}} \big].$
- lacksquare A unit increase in x multiplies the odds of success by the factor e^{eta_1} .
- What if the CI for e^{β_1} contains 1?

Programming task data (cont)

exp(confint.default(glm_out,parm = "experience"))

Each additional month of experience increases the odds of completing the programming task by a factor of 1.035 to 1.335, with 95% confidence.



Residuals for logistic regression

- ightharpoonup Ordinary residuals $Y_i \hat{\pi}_i$ cannot be Normally distributed.
- In GLMs one looks at special residuals called deviance residuals.
- In logistic regression, the deviance residuals are defined as

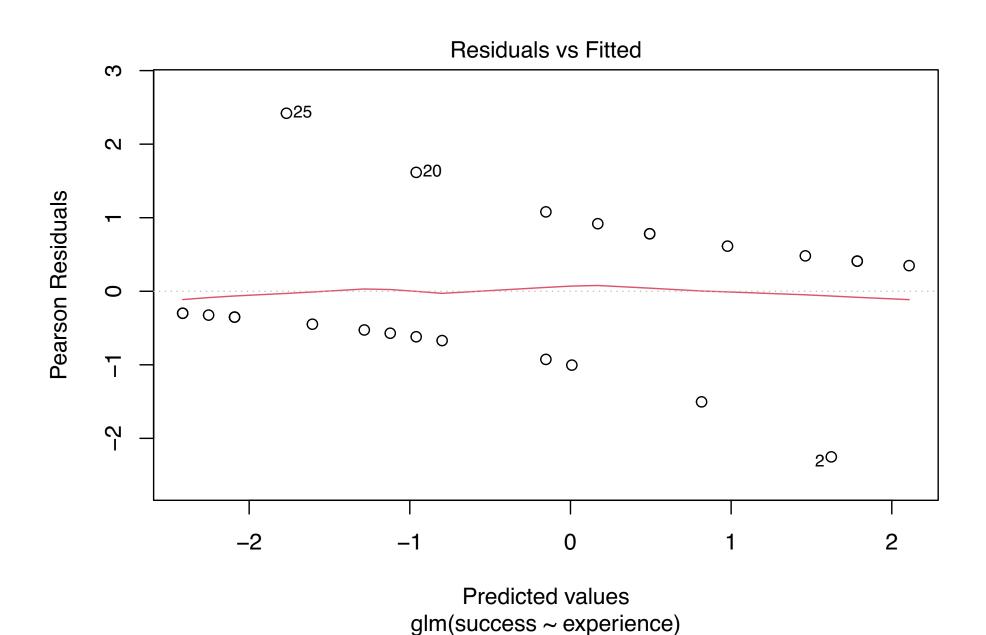
$$\hat{d}_i = \operatorname{sign}(Y_i - \hat{\pi}_i) \sqrt{-2[Y_i \log \hat{\pi}_i + (1 - Y_i) \log(1 - \hat{\pi}_i)]}$$

for
$$i = 1, \dots, n$$
.

These are not Normal either, but are useful for assessing model fit.

Programming task data (cont)

plot(glm_out, which = 1)



Checking model fit with a simulated envelope

Use deviance residode d'..... d'n.

estimited midel

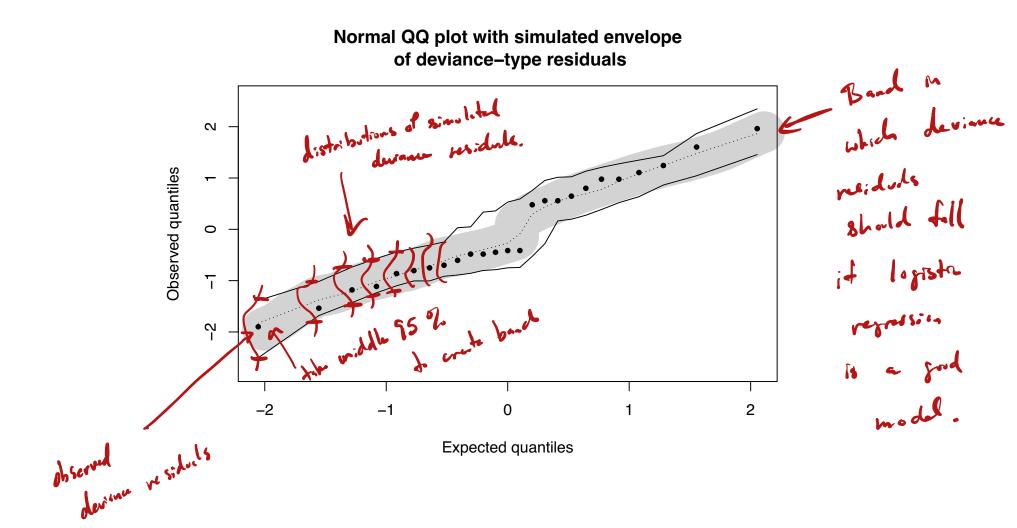
The simulated envelope method is described in Kutner et al. (2005):

- Fit the logistic regression model and obtain $\hat{\pi}_1, \dots, \hat{\pi}_n$.
- lacksquare Obtain the deviance residuals; sort them as $\hat{d}_{(1)} < \hat{d}_{(2)} < \cdots < \hat{d}_{(n)}$.
- Generate many new data sets $Y_i^* \sim \text{Bernoulli}(\hat{\pi}_i)$, $i=1,\ldots,n$.
 - For each new data set, obtain sorted $\hat{d}^*_{(1)} < \hat{d}^*_{(2)} < \cdots < \hat{d}^*_{(n)}$
 - Plot $\hat{d}_{(i)}$ as well as the 0.025 and 0.975 quantiles and the mean of the $\hat{d}_{(i)}^*$ \forall i (it doesn't matter what is chosen as the x-axis).
 - The quantiles of the $\hat{d}^*_{(i)}$ make a band. If the model fits, then the $\hat{d}_{(i)}$ should lie within the band and close to the mean.

Asks: If the model is correct, how would the deviance residuals behave?

Programming task data (cont)

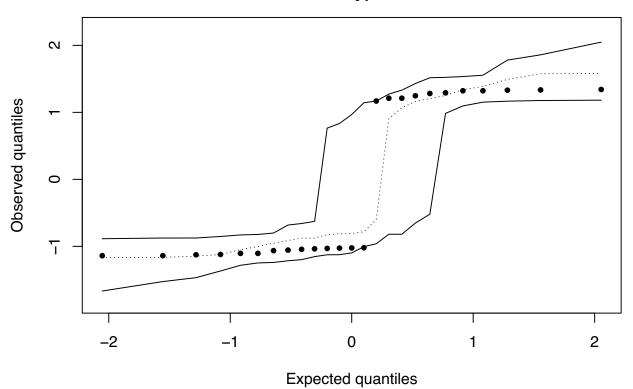
```
library(glmtoolbox) # first time run install.packages("glmtoolbox")
envelope(glm_out,type = "deviance")
```



```
Try X: = (months of experience)2
```

```
experience2 <- (experience - mean(experience))^2
envelope(glm(success ~ experience2, family = "binomial"), type = "deviance")</pre>
```

Normal QQ plot with simulated envelope of deviance-type residuals



German credit score data from Hofmann (1994)

Response is credit rating (good/bad) various predictors.

[19] "own_telephone"

```
library(foreign) # credit-g dataset from https://www.openml.org/
link <- url("https://people.stat.sc.edu/gregorkb/data/dataset_31_credit-g.arff")</pre>
credg <- read.arff(link)</pre>
colnames(credg)
```

```
[1] "checking_status"
                               "duration"
                                                         "credit_history"
 [4]
    "purpose"
                               "credit amount"
                                                         "savings status"
 [7] "employment"
                               "installment commitment" "personal status"
[10] "other_parties"
                               "residence since"
                                                         "property_magnitude"
[13] "age"
                               "other_payment_plans"
                                                         "housing"
                                                         "num_dependents"
[16] "existing_credits"
                               "job"
                                                         "class"
```

"foreign_worker"

summary(credg[,1:3])

checking_status duration				credit_history			story
<0	:274	Min.	: 4.0	all paid		:	49
>=200	: 63	1st Qu	:12.0	critical/other	existing	credit:2	93
0<=X<200	:269	Median	:18.0	delayed previou	usly	:	88
no checking:394		Mean	:20.9	existing paid		:5	30
		3rd Qu	.:24.0	no credits/all	paid	:	40
		Max.	:72.0				

Logistic multiple regression model

Assume

$$Y_i \sim \mathrm{Bernoulli}(\pi_i), \quad \log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip},$$

for $i = 1, \dots, n$, where

- $\triangleright Y_i$ is the response for observation i.
- x_{i1}, \dots, x_{ip} are the values of the predictors for obs i.
- \blacktriangleright π_i is the probability of "success" for observation i.
- $ightharpoonup eta_0$ is an intercept and eta_1,\ldots,eta_p are slope parameters.
- $\rightarrow \pi_i/(1-\pi_i)$ is the odds of "success" for obs i.
- lacksquare $\log(\pi_i/(1-\pi_i))$ is the \log -odds for obs i.

So we assume the log-odds are a linear function of the predictors.

Interpreting multiple logistic regression parameters

- Let π_{0j} and π_{1j} be the "success" probabilities at x_{0j} and $x_{0j}+1$ but with all other x_{0k} fixed for $k\neq j$.
- Then we have the two equations

1.
$$\log\left(\frac{\pi_{0j}}{1-\pi_{0j}}\right) = \beta_0 + \sum_{k \neq j} \beta_k x_{0k} + \beta_j x_{0j}$$
 2. - 1. = β_j 3. -

Subtracting the first equation from the second gives

$$\beta_j = \log\left(\frac{\pi_{1j}/(1-\pi_{1j})}{\pi_{0j}/(1-\pi_{0j})}\right) \quad \text{and} \quad e^{\beta_j} = \frac{\pi_{1j}/(1-\pi_{1j})}{\pi_{0j}/(1-\pi_{0j})}.$$

So β_1 is log of the odds ratio associated with a unit increase in x_j with all other predictors held fixed.

German credit score data (cont)

employmentunemployed

```
glm_out <- glm(ifelse(class == "good",1,0) ~ ., family = "binomial", data = credg)</pre>
summary(glm_out)
Call:
glm(formula = ifelse(class == "good", 1, 0) ~ ., family = "binomial",
    data = credg)
Coefficients:
                                             Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                             1.505e+00 1.248e+00 1.206 0.227801
                                             9.657e-01 3.692e-01 2.616 0.008905 **
checking_status>=200
checking_status0<=X<200
                                             3.749e-01 2.179e-01 1.720 0.085400 .
                                            1.712e+00 2.322e-01 7.373 1.66e-13 ***
checking_statusno checking
duration
                                            -2.786e-02 9.296e-03 -2.997 0.002724 **
credit_historycritical/other existing credit 1.579e+00 4.381e-01
                                                                   3.605 0.000312 ***
credit_historydelayed previously
                                            9.965e-01 4.703e-01 2.119 0.034105 *
credit_historyexisting paid
                                            7.295e-01 3.852e-01 1.894 0.058238 .
credit_historyno credits/all paid
                                            1.434e-01 5.489e-01 0.261 0.793921
purposedomestic appliance
                                            -2.173e-01 8.041e-01 -0.270 0.786976
purposeeducation
                                            -7.764e-01 4.660e-01 -1.666 0.095718 .
purposefurniture/equipment
                                             5.152e-02 3.543e-01 0.145 0.884391
purposenew car
                                            -7.401e-01 3.339e-01 -2.216 0.026668 *
                                            7.487e-01 7.998e-01 0.936 0.349202
purposeother
                                             1.515e-01 3.370e-01 0.450 0.653002
purposeradio/tv
purposerepairs
                                            -5.237e-01 5.933e-01 -0.883 0.377428
purposeretraining
                                             1.319e+00 1.233e+00 1.070 0.284625
                                             9.264e-01 4.409e-01 2.101 0.035645 *
purposeused car
credit_amount
                                            -1.283e-04 4.444e-05 -2.887 0.003894 **
savings_status>=1000
                                            1.339e+00 5.249e-01
                                                                   2.551 0.010729 *
                                            3.577e-01 2.861e-01 1.250 0.211130
savings_status100<=X<500
savings_status500<=X<1000
                                             3.761e-01 4.011e-01 0.938 0.348476
                                             9.467e-01 2.625e-01
savings_statusno known savings
                                                                   3.607 0.000310 ***
employment>=7
                                             2.097e-01 2.947e-01 0.712 0.476718
                                             1.159e-01 2.423e-01 0.478 0.632415
employment1<=X<4
employment4<=X<7
                                             7.641e-01 3.051e-01 2.504 0.012271 *
```

-6.691e-02 4.270e-01 -0.157 0.875475

Note that glm() estimates three coefficients for checking_status.

summary(credg\$checking_status)

Numeric predictors to encode the levels of the categorical predictor:

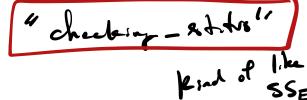
$$x_{i1} = \left\{ \begin{array}{ll} 1 & 200 \leq \text{checking} \\ 0 & \text{otherwise} \end{array} \right.$$

$$x_{i2} = \left\{ \begin{array}{ll} 1 & 0 \leq \text{checking} < 200 \\ 0 & \text{otherwise} \end{array} \right.$$

$$x_{i3} = \left\{ \begin{array}{ll} 1 & \text{no checking} \\ 0 & \text{otherwise} \end{array} \right.$$

Likewise for other categorical predictors.

Deviances replace error sums of squares in GLMs



- The <u>deviance</u> is the sum of squared *deviance* residuals $\sum_{i=1}^{n} \hat{d}_{i}^{2}$
- In logistic regression the deviance can be computed as

Is
$$\sum_{i=1}^{n} \hat{d}_{i}^{2}$$
 but here

$$\sum_{n=0}^{\infty} |\nabla x| = \sum_{n=0}^{\infty} |\nabla x| = \sum_{n$$

$$\mathrm{Dev} = -2\sum_{i=1}[Y_i\log\hat{\pi}_i + (1-Y_i)\log(1-\hat{\pi}_i)].$$

Full-reduced model test: Reject H_0 : $\beta_j = 0$ for all $j \in D$ if

$$\text{Dev}(\text{Reduced}) - \text{Dev}(\text{Full}) > \chi^2_{\mathfrak{S}\alpha},$$

where s is the number of predictors in D (need large n).

Test whether any level of checking status is important to the credit score.

```
credg_red <- credg[,-1] # remove checking_status column

glm_full <- glm(ifelse(class == "good",1,0) ~ ., family = "binomial", data = credg)
glm_red <- glm(ifelse(class == "good",1,0) ~ ., family = "binomial", data = credg_red)

p <- length(coef(glm_full)) - 1
s <- nlevels(credg$checking_status) - 1

1 - pchisq(glm_red$deviance - glm_full$deviance,s)</pre>
```

[1] 2.731149e-14 => Conclude chubing - 8ths 13 a

8: gnificent predictor.

Variable selection in logistic regression

- ▶ We may want to discard some of our predictors.
- One way is to add/remove variables stepwise according to AIC.
- Can do this just as we did in multiple linear regression.
- Be cautious about making inferences after selecting a model.

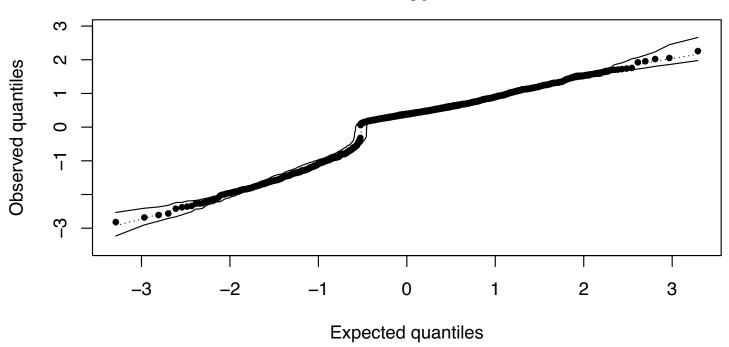
Call:

```
glm(formula = ifelse(credg$class == "good", 1, 0) ~ checking_status +
    duration + credit_history + purpose + credit_amount + savings_status +
    installment_commitment + personal_status + other_parties +
    age + other_payment_plans + housing + own_telephone + foreign_worker,
    family = "binomial", data = credg)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                            4.838e-01 1.017e+00 0.476 0.634362
checking_status>=200
                                            1.024e+00 3.626e-01 2.824 0.004739 **
checking_status0<=X<200
                                            3.900e-01 2.121e-01 1.839 0.065928 .
checking_statusno checking
                                            1.718e+00 2.281e-01 7.531 5.05e-14 ***
                                           -2.568e-02 8.940e-03 -2.872 0.004074 **
duration
credit_historycritical/other existing credit 1.373e+00 4.041e-01 3.397 0.000680 ***
                                            7.910e-01 4.488e-01 1.762 0.077985 .
credit_historydelayed previously
credit_historyexisting paid
                                           7.115e-01 3.788e-01 1.879 0.060305 .
credit_historyno credits/all paid
                                           -1.188e-01 5.268e-01 -0.225 0.821612
purposedomestic appliance
                                           -2.576e-01 7.763e-01 -0.332 0.740041
                                           -9.262e-01 4.569e-01 -2.027 0.042628 *
purposeeducation
purposefurniture/equipment
                                           -4.216e-02 3.415e-01 -0.123 0.901748
                                           -7.827e-01 3.272e-01 -2.392 0.016752 *
purposenew car
purposeother
                                            6.523e-01 7.832e-01 0.833 0.404946
purposeradio/tv
                                            1.368e-01 3.288e-01 0.416 0.677335
purposerepairs
                                           -6.402e-01 5.808e-01 -1.102 0.270365
purposeretraining
                                            1.382e+00 1.240e+00 1.114 0.265228
purposeused car
                                            8.246e-01 4.288e-01 1.923 0.054495 .
credit_amount
                                           -1.294e-04 4.221e-05 -3.066 0.002169 **
                                            1.289e+00 5.072e-01 2.542 0.011008 *
savings_status>=1000
                                            3.282e-01 2.767e-01 1.186 0.235477
savings_status100<=X<500
                                            4.304e-01 3.933e-01 1.094 0.273900
savings_status500<=X<1000
                                            9.628e-01 2.570e-01 3.746 0.000179 ***
savings_statusno known savings
```

Normal QQ plot with simulated envelope of deviance-type residuals



Classification with the logistic regression model

Consider classifying the observations as 1 or 0 according to $\hat{\pi}_i$:

 $lackbox{ }$ Choose a threshold $c\in[0,1]$ and make the classification

$$\hat{Y}_i = \left\{ \begin{array}{ll} 1, & \hat{\pi}_i \geq c \\ 0, & \hat{\pi}_i < c. \end{array} \right\}$$

Can compute observed true positive and false positive rates

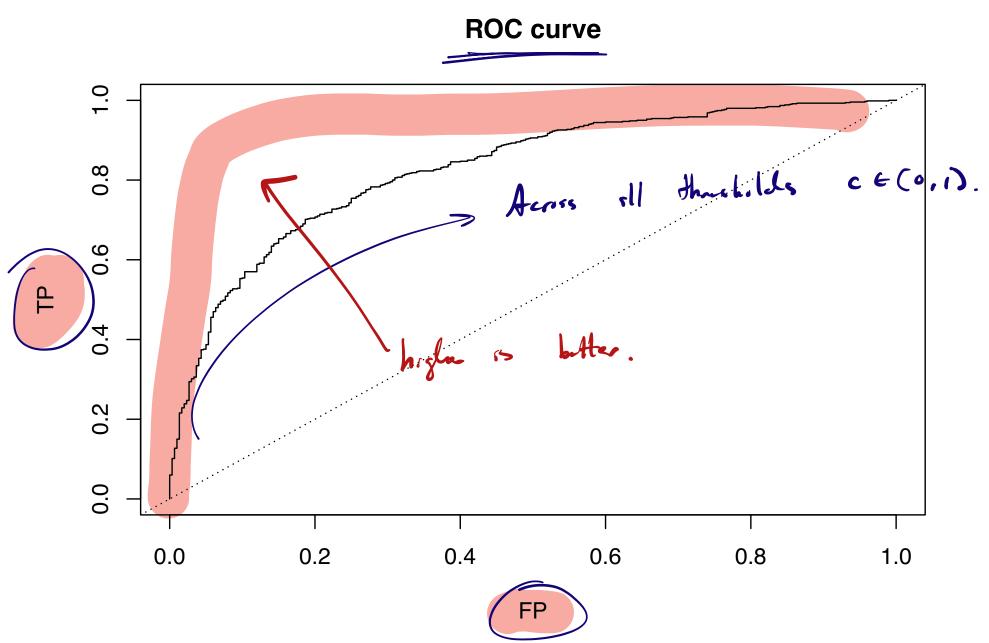
Plotting TP against FP over all $c \in [0,1]$ creates the receiver operating characteristic (ROC) curve.

German credit score data (cont)

Compute TP and FP over a range of thresholds c. Plot ROC curve.

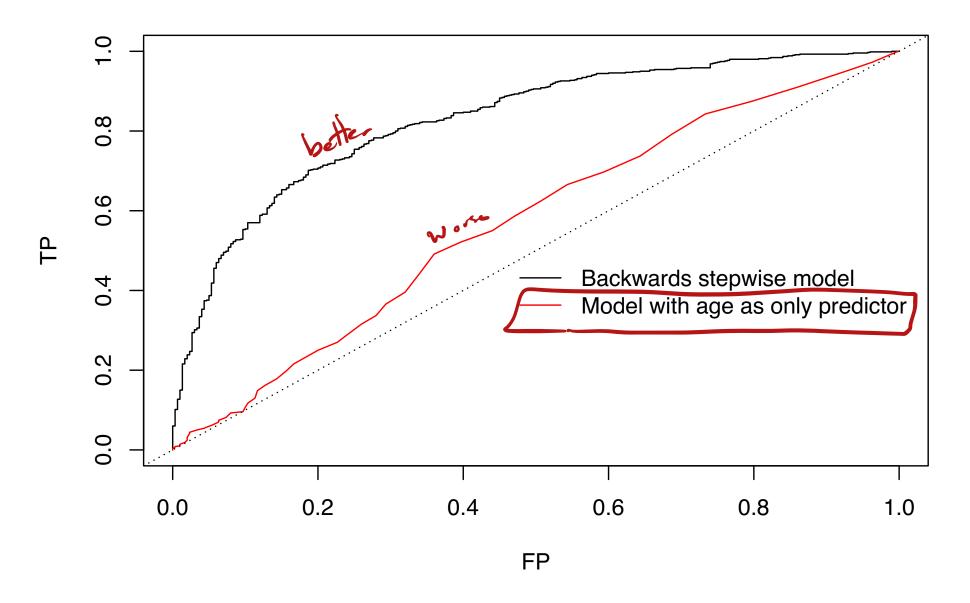
```
Y <- ifelse(credg$class == "good",1,0)
pi_hat <- step_back$fitted.values</pre>
n1 < - sum(Y == 1)
n0 <- sum(Y == 0)
cc <- sort(c(0,pi_hat,1))</pre>
TP <- FP <- numeric(length(cc))</pre>
for(j in 1:length(cc)){
  Yhat <- pi_hat >= cc[j]
  TP[j] <- sum(Yhat == 1 & Y == 1) / n1
  FP[j] <- sum(Yhat == 1 & Y == 0) / n0
}
```

```
plot(TP ~ FP, type = "1", main = "ROC curve")
abline(0,1,lty = 3)
```



Can use ROC curves to compare models. 1

ROC curves



¹Best to evaluate model performance on a set of data not used in fitting the model.

References

Hofmann, Hans. 1994. "Statlog (German Credit Data)." UCI Machine Learning Repository.

Kutner, Michael H, Christopher J Nachtsheim, John Neter, and William Li. 2005. *Applied Linear Statistical Models*. McGraw-hill.