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Programming task data from Kutner et al. (2005)

Twenty-five people succeeded or failed at a programming task.
T—

Months of programming experience was recorded for each person.

experience <- c(14,29,6,25,18,4,18,12,22,6,30,11,30,5,20,13,9,32,24,13,19,4,28,22,8)
success <- ¢(0,0,0,1,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,1,1)

Can we predict probability of success based on experience?
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plot(success ~ experience)
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b %
Assume odds e b A
Y; ~ Bernoulli(m;), log ( = %0 + 5%,
\—'—\,-h/
fori =1,...,n, where e(-#, ) el glepe

P Y. is the response for observation 1.

P . is the value of a predictor/covariate/explanatory variable for obs i.
P 7, is the probability of “success” for observation i.
> By and 3, are slope and intercept parameters. .

» 7./(1—m,) is the odds of “success” for obs i. BLI PP

» log(m, /(1 —m,)) is the log-odds for obs i. =T

Logistic regression assumes the log-odds are linear in the predictor.

odds: TP T s pab of  Gueess, We el i o oddy  in fevee & guss
1=

_ | .Y :
E.z, (;{ ﬁ”t ! #‘I 1: & ¢ . ‘ 0“&,4'»-om OM’$
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The logit and logistic transformations

X

P The transformation y = —5— is called the logistic transformation.

1+e*
P Its inverse & = log(+L-) is called the logit transformation.

1-y
» We have

1 — 7. 1 + eBotbrz;

1

A— ~=

T - eBO“i‘lei
log( : ) = Py + Brz; = W =
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x <- seq(-10,10,length=200)
y <- exp(x) / (1 + exp(x))
par (mfrow= c(1,2))
plot(y~x,type = "1")
plot(x~y,type = "1")
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Goals in logistic regression Y
(7t L% P, %° (o

iMate BJ_and 61.

ild Cl for 51 and test Hy: B, = O
/"Give interpretations of the estlmated regression coefficients.
5. Check goodness of fit of the logistic regression model.

6. Add additional covariates..

L"““" ey 0"’\ L.g.wq"’s-bucr—'\
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Maximum likelihood estimation in logistic regression

» We do not use least-squares to estimate [, and 3.

P Instead we use maximum likelihood estimators (MLEs).

> TheiM LEs!vare the parameter values giving the observed data the
highest possible probability.

P Intercept b, and slope b, give to the observed data the probability

‘\’)('{.o.‘f“. T.° 1) Ly, (bg bq) :H b07b1 1_7T(b07b1)]

L'
1=1

6b0+blx
with |, (bg, b1) = fori=1,...,n.

1 4 ebotba2;
» The MLEs By, B, are the values of by, b, that maximize £, (by, b, ).
» £ (by,by) is called the likelihood function.
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Computing the MLEs in logistic regression
Simpl  line rgernes ?’ V.- 0%,

5. £ G

Z (x-20"

P There is no “closed-form” expression for BAO and ﬁAl.

P One must find their values numerically, that is with an algorithm.
P More convenient to work with log £, (by, b;), which is given by

n

€, (bg,by) = Z[Yi(bO +byx;) — log(1 4 ePotor®i)],

1=1

» Newton's method is one way to find the maximizers of £, (b, b;).
e
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Programming task data (cont)

Newton-Raphson algorithm for computing ﬁAO and BAl.
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Generalized linear models

4—~’

P The logistic regression model is in a class of models called GLMs.
» GLM stands for generalized linear model.

P Poisson regression, binomial response regression, i.a. are GLMs too.

» Use glm() function in R to obtain £, and f;.
I D
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Use glm() function with the option family = "binomial".

glm_out <- glm(success ~ experience, family = "binomial")

summary (glm_out)
a = '%.06 [ [50 r,’x.
° o& =y

Call:
glm(formula = sug¢cess ~ experience, family = "binomial") =2 [;o* (*
Coefficients: _ e

Estimate Std. Error z value Pr(>|z]|) e = _— f%."("-'x
(Intercept) 1.26935 -2.430 0.0151 x* &
experience 0.06498  2.485 l ¢
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' p.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 34.296 on 24 degrees of|freedom
Residual deviance: 25.425 on 23 degrees of|freedom

AIC: 29.425 - 0.
| I '\W‘*’( \'\°' ¥

Number of Fisher Scoring iterations: 4 \
™
e-"
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x <- seq(min(experience) ,max(experience),length = 200)
pihat_x <- 1/(1 + exp( -(coef(glm_out) [1] + coef(glm_out) [2]*x)))

plot(success ~ experience); lines(pihat_x~x)
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0.0
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experience
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Fitted probabilities

P Define the fitted probabilities as

~ 660+Bl@
T, = — for 1=1,...,n.

» For any value z we estimate the probability of “success” as

new'

650+61xnew

Toew = —— .
Hew 1 —I— 6/80+51wnew
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Programming task data (cont)

plot(success ~ experience); lines(pihat_x~x)
points(glm_out$fitted.values~experience,pch = 19)
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Asymptotic distribution of slope estimator and Cl

» For large enough n, 31 is approximately Normal, such that

ﬁi _Aﬂl X7 Normal (0, 1),
A1) “sd) sheded e

where, setting w, = 7,(1 —7;) for ¢ =1, ..., n, we may write

§6{61} — [2?21 &}zx% o (Zizl ’@i)_l(z:&:l @zxz>2] ’ '
» We can make an approximate (1 — «)100% ClI for 3; as

B, + Ze)2 se{f, }-
P
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Programming task data (cont)

# Confidence interval for betal

pihat <- glm_out$fitted.values

blhat <- coef(glm_out) [2]

w <- pihat*(1-pihat)

se <- sqrt(1l/(sum(w*experience™2) - sum(wxexperience) 2/sum(w)))
lo <- blhat - 1.96 * se

up <- blhat + 1.96 * se

c(lo,up)

experience experience
0.03412491 0.28884692

# CIs for both beta0 and betal automatically from glm_out
confint.default (glm_out)

——

—

(Intercept) -5.52797622 -0.5914155
experience Er03412744 0.2888444 “‘

2.5 %  97.5 Y% "y A e dane




Testing whether the slope coefficient is zero

NL')"\
To test Hy: By = 0 versus Hy: 3, # 0, do:

e —
h",t "lw-

-0 3
1. Compute Z, ., = A5—1A gV
== {5} N
2. Reject Hy at avif [Zoo| > 242 = i

3. Obtain p value as 2(1 — P(Z > |Z,.«|)), Z ~ Normal(0,1). Zot

I P

The summary () function on the glm() output prints this p value.
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?o & f$.7(;

1

Odds and odds ratios
% (,

P Let 7 be the probability of success.

» Then 7/(1 — 7) is called the odds in favor of success.

a. If m=1/2 then 7/(1 —7) = 1. “"One-to-one” odds of success.
b. If #=2/3 then /(1 —7) = 2. Success 2x more likely than failure.
c. If m=1/4then n/(1—m) = 1/3. Failure 3x more likely than success.

> Let{wolandmﬂl be success probs under an initial and an altered
condition, respectively.

» Then m /(1= m) is called the odds ratio
7To/( — 7T0> '

P The odds ratio is the factor by which the odds are multiplied when
the initial condition is changed to the altered condition.

(- = FAOTTS -

— T'o/[ { ,TIA —
” odd$ e old odds
ne 0dd rA“
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Interpreting the logistic regression parameters

Mo .+ [P X
|°2r ( -TTe = b & One anit Inenste s X
P Let To and 3! be the “success” probabilities at-and t;() + 1. h
> Then we have the two equations Po"‘f’ol“"“\ ~ (P ~0,x) =0

@zlog(l@ﬁ)_bg(ljo%)zlog e j)

1 —
m /(=) is called an odds ratio.
To/ (1 —mp)

P So f3; is log of the odds ratio associated with a unit increase in .

loa(‘%\; ‘"8 8T '°3’L
—~—~——

P The quantity
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Odds ratio from a unit increase in x

SN
PI; )0)' ’lT,/(l'TW)

P From the previous slide, we have

oB1 — m /(1 —m)
mo/ (1 —mp)

» Can build a Cl for et by exponentia:cing =/k
» Gives Cl for e/t as [ Br— Zas25eiB1} 51+Za/2§5{ﬁ1}]

P A unit increase in x multlplles the odds of success by the factor e”1.
» What if the Cl for e”1 contains 17? 7

’L eﬁ'-‘-i (=2 P

ol b ek T e

M&mb x

21/39



Programming task data (cont)

A 16191
(5' 0.

exp(confint.default(glm_out,parm = "experience"))

5% 97.5 Y ?. Lb r-.*"“"
experienc#[?fagz;IG 1.334884/ i{* °
- CL::: ‘i;, C /

Each additional month of experience increases the odds of completing the
programming task by a factor of 1.035 to 1.335, with 95% confidence.

Co

—_—
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Residuals for logistic regression

» Ordinary residuals Y; — 7, cannot be Normally distributed.
» In/GLMs, one looks at special residuals called deviance residuals.
» In logistic regression, the deviance residuals are defined as

S

d; = sign(Y; — 7,)\/—2[Y;log®; + (1 —Y;) log(1 — 7,)]

fore=1,...,n.
P These are not Normal either, but are useful for assessing model fit.
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Programming task data (cont)

plot(glm_out,which = 1)

Pearson Residuals

Residuals vs Fitted

Predicted values
glm(success ~ experience)

025
020
O
© @)
— e T T T T T T e
SITTTITTITTPNIIIIIIIITOI e
O
O
O o
20
| | |
-2 -1 0
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Checking model fit with a simulated envelope

N A
T deee i A 4l
7
5 ! The simulated envelope method is described in Kutner et al. (2005):
> £
.;{ X P Fit the logistic regression model and obtain Ty eeey T,
Sfi P Obtain the deviance residuals; sort them as dipy < dggy < - <dp.
é\" {Eenerate many new data sets Y, ~ Bernoulli(7,), 7 = 1, ..., n.
f:i\ For eaAch new data set, obtain sorted d}) < dj5) < < dp,).
.% » » Plot d(;) as well as the 0.025 and 0.975 quantiles and the mean of
the J@ V ¢ (it doesn’t matter what is chosen as the z-axis).
P The quantiles of the CZE’;) make a band. If the model fits, then the
CZ@) should lie within the band and close to the mean.

Asks: If the model is correct, how would the deviance residuals behave?
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Programming task data (cont)

library(glmtoolbox) # first time run install.packages("glmtoolbox")
envelope(glm_out,type = "deviance")

Normal QQ plot with simulated envelope
of deviance-type residuals

oV
n
g ~—
c
©
>
T o
3
s
o)
(D] -
8 |
o\
I
'.1 p_\‘n Expected quantiles
0\)"&‘ \{" “
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/

Tey % = wa« ~ £ wwaqu-

experience2 <- (experience - mean(experience)) 2
envelope(glm(success ~ experience2, family = "binomial"),type = "deviance")

Normal QQ plot with simulated envelope
of deviance-type residuals

N_
n
O~
=
C
©
>
o
®
> © T
p -
)
n
e
O

Expected quantiles
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German credit score data from Hofmann (1994)

Response is credit rating {good/bad)] various predictors.
— [

library(foreign) # credit-g dataset from https://www.openml.org/

link <- url("https://people.stat.sc.edu/gregorkb/data/dataset_31_credit-g.arff")
credg <- read.arff(link)

colnames (credg)

[1] "checking_status" "duration" "credit_history"

[4] "purpose" "credit_amount" "savings_status"

[7] "employment" "installment_commitment" "personal_status"
[10] "other_parties" "residence_since" "property_magnitude"
[13] "age" "other_payment_plans" "housing"

[16] "existing_credits" "job" "num_dependents"
[19] "own_telephone" "foreign_worker" "class"

28 /39



summary (credg[,1:3])

checking_status duration credit_history
<0 :274 Min. : 4.0 all paid : 49
>=200 : 63 1st Qu.:12.0 critical/other existing credit:293
0<=X<200 1269 Median :18.0 delayed previously : 88
no checking:394 Mean :20.9  existing paid :5630
3rd Qu.:24.0 no credits/all paid : 40
Max. :72.0
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Logistic multiple regression model

4—(5. x,
% :L_ ‘oﬁst‘ﬂ, lby _ "

Y; ~ Bernoulli(m;), log ( x ) 50 +51$ 1T +5 pLip’

Assume

1 T (o
forv. =1,...,n, where

P Y. is the response for observation <.

» 1., » are the values of the predictors for obs .
» 7. s the probablllty of “success” for observation 1.
» 3, is an intercept and 3, ... , 5, are slope parameters.

» 7./(1—m,) is the odds of “success” for obs i.
» log(m;/(1 —m;)) is the log-odds for obs 1.

So we assume the log-odds are a linear function of the predictors.
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Interpreting multiple logistic regression parameters

> Letand'ﬂ]be the “success” probabilities a l.f "Ik
W

but with all other z; fixed for k # j.

» Then we have the two equations

flog () fo+ So B+ Bty ) 2o = 1= C
2. log (%) = By + Zk# Bror + Bi(g; + 1)

P

-
PR ILES
P Subtracting the first equation from the second gives 0dé+ wfin mers¥ig %

3. ! log (le/(l - le)) nd of — my /(1 — le). l":ﬂj’_
~ L 7T0j/<1 - 7T0j> Woj/(l — 7703.)

» So f3; is log of the odds ratio associated with a unit increase in T
with all other predictors held fixed.
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German credit score data (cont)

glm_out <- glm(ifelse(class == "good",1,0) ~ ., family = "binomial", data = credg)
summary (glm_out)

Call:
glm(formula = ifelse(class == "good", 1, 0) ~ ., family = "binomial",
data = credg)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.505e+00 1.248e+00 1.206 0.227801
checking_status>=200 9.657e-01 3.692e-01 2.616 0.008905 *x*
checking_status0<=X<200 3.749e-01 2.179e-01 1.720 0.085400 .
checking_statusno checking 1.712e+00 2.322e-01 7.373 1.66e-13 **x*
duration -2.786e-02 9.296e-03 -2.997 0.002724 =*x
credit_historycritical/other existing credit 1.579e+00 4.381e-01 3.605 0.000312 *x*x*
credit_historydelayed previously 9.965e-01 4.703e-01  2.119 0.034105 *
credit_historyexisting paid 7.295e-01 3.852e-01 1.894 0.058238 .
credit_historyno credits/all paid 1.434e-01 5.489e-01 0.261 0.793921
purposedomestic appliance -2.173e-01 8.041e-01 -0.270 0.786976
purposeeducation -7.764e-01 4.660e-01 -1.666 0.095718 .
purposefurniture/equipment 5.152e-02 3.543e-01 0.145 0.884391
purposenew car -7.401e-01 3.339e-01 -2.216 0.026668 =*
purposeother 7.487e-01 7.998e-01  0.936 0.349202
purposeradio/tv 1.515e-01 3.370e-01 0.450 0.653002
purposerepairs -5.237e-01 5.933e-01 -0.883 0.377428
purposeretraining 1.319e+00 1.233e+00 1.070 0.284625
purposeused car 9.264e-01 4.409e-01  2.101 0.035645 *
credit_amount -1.283e-04 4.444e-05 -2.887 0.003894 *x
savings_status>=1000 1.339e+00 5.249e-01 2.551 0.010729
savings_status100<=X<500 3.577e-01 2.861e-01 1.250 0.211130
savings_status500<=X<1000 3.761e-01 4.011e-01  0.938 0.348476
savings_statusno known savings 9.467e-01 2.625e-01 3.607 0.000310 *x*x*
employment>=7 2.097e-01 2.947e-01  0.712 0.476718
employment1<=X<4 1.159e-01 2.423e-01 0.478 0.632415
employment4<=X<7 7.641e-01 3.051e-01 2.504 0.012271 =*
employmentunemployed -6.691e-02 4.270e-01 -0.157 0.875475 32/39



Note that glm() estimates three coefficients for checking_status.

summary (credg$checking_status)

<0 >=200 0<=X<200 no checking
274 63 269 394

Numeric predictors to encode the levels of the categorical predictor:

200 < checking
otherwise

1

0

1 0 < checking < 200
0 otherwise

1 no checking

0 otherwise

Likewise for other categorical predictors.
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Deviances replace error sums of squares in GLMs

\r\ju & ‘\‘.ﬂ’ s Xu-’i’\v‘** ¥ _{# Hhekeiny — &3“'("“/“)‘
N He wo L7 kst ¢ s‘SE,,,,

) bt
[l = " [l ‘
P The deviance is the sum of squared deviance residuals m "

P In logistic regression the deviance can be computed as|
$uve ¢‘f ‘Bdm-" A-—v?buu— m.’A.,JA . ,.._..;,l.w‘ S.
n

-
-

Dev = —2 ) [V;log#; + (1 —Y;)log(1 — 7;)].
=1

1=

» Full-reduced model test: RejectLHO: BZ = O]for all 7 € D if

Dev(Reduced) — Dev(Full) > 4.,
where s is the number of predictors in D (needT?;eTzD

— 4

A e F o — F 4 vwvi
- $Se,. (T) /@ rewest =0
s’ (5% (4 =~ £l wesl ©
b - ‘
b Sem (F) / D, e fed e

—d R 5



German credit score data (cont) ',,,J.,.=I——VGQ~"{,( )%

— I
Dev (&) = Des (F1V)
Test whether any level of checking status is important to the credit score.

credg_red <- credgl,-1] # remove checking_status column

glm_full <- glm(ifelse(class == "good",1,0) ~ ., family = "binomial", data = credg)
glm_red <- glm(ifelse(class == "good",1,0) ~ ., family = "binomial", data = credg_red)

p <- length(coef(glm_full)) - 1
s <- nlevels(credg$checking_status) - 1

1 - pchisq(glm_red$deviance - glm_full$deviance,s)

[1] 2.731149e-14 = Cone e J,...Jl»‘ak - 3{»4\/5 > 3

%:8“4}“”5+ wnu*fdk1"
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Variable selection in logistic regression

» We may want to discard some of our predictors.

» One way is to add/remove variables stepwise according to AIC.
P Can do this just as we did in multiple linear regression.

P Be cautious about making inferences after selecting a model.
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glm_all <- glm(ifelse(credg$class == "good",1,0) ~ ., family = "binomial", data = credg)

step_back <- step(glm_all,

direction = "backward",
scope = formula(glm_all),
criterion = "aic",

trace = 0) # suppress printed output
summary (step_back)
p

Call:

glm(formula = ifelse(credg$class == "good", 1, 0) ~ checking_status +
duration + credit_history + purpose + credit_amount + savings_status +

installment_commitment + personal_status + other_parties +

age + other_payment_plans + housing + own_telephone + foreign_worker,

.476
.824
.839
.531
.872
.397
.762
.879
.225
.332
.027
.123
.392
.833
.416
.102
.114
.923
.066
.542
.186
.094

family = "binomial", data = credg)
Coefficients:
Estimate Std. Error z value

(Intercept) 4.838e-01 1.017e+00
checking_status>=200 1.024e+00 3.626e-01
checking_status0<=X<200 3.900e-01 2.121e-01
checking_statusno checking 1.718e+00 2.281e-01
duration -2.568e-02 8.940e-03
credit_historycritical/other existing credit 1.373e+00 4.041e-01
credit_historydelayed previously 7.910e-01 4.488e-01
credit_historyexisting paid 7.115e-01 3.788e-01
credit_historyno credits/all paid -1.188e-01 5.268e-01
purposedomestic appliance -2.576e-01 7.763e-01
purposeeducation -9.262e-01 4.569e-01
purposefurniture/equipment -4.216e-02 3.415e-01
purposenew car -7.827e-01 3.272e-01
purposeother 6.523e-01 7.832e-01
purposeradio/tv 1.368e-01 3.288e-01
purposerepairs -6.402e-01 5.808e-01
purposeretraining 1.382e+00 1.240e+00
purposeused car 8.246e-01 4.288e-01
credit_amount -1.294e-04 4.221e-05
savings_status>=1000 1.289e+00 5.072e-01
savings_status100<=X<500 3.282e-01 2.767e-01
savings_status500<=X<1000 4.304e-01 3.933e-01
savings_statusno known savings 9.628e-01 2.570e-01

WrEL PN

.746

Pr(>|zl)

[l eolNeolNelNeolNeoNelNeolNeoNeo oo Neo oo NeoNoNe Neo i Ne e lNe]

.634362
.004739
.065928 .
.0be-14
.004074
.000680
.077985 .
.060305 .
.821612
. 740041
.042628
.901748
.016752
.404946
.677335
.270365
.265228
.0564495 .
.002169
.011008
.235477
.273900
.000179

X%

* %k %k
*%
*kk

* %k

* %k %k
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envelope (step_back,type="deviance")

Observed quantiles

Normal QQ plot with simulated envelope
of deviance-type residuals

Expected quantiles
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Classification with the logistic regression model

Consider classifying the observations as 1 or 0 according to T;:

P Choose a threshold ¢ € [0, 1] and make the classification

» Can compute observed true positive and false positive rates
I {7 )
¢ == Y.=1NnY. =1

8 \\ 1 7

‘, P (@ iy

@ #HY, =1nY, =0}

‘rf? ¥ #Y;=0r

> Plotting TP against FP over all ¢ € |0, 1] creates the receiver
operating characteristic (ROC) curve.
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German credit score data (cont)

Compute TP and FP over a range of thresholds c. Plot ROC curve.

Y <- ifelse(credg$class == "good",1,0)
pi_hat <- step_back$fitted.values

1)
0)

nl <- sum(Y
n0 <- sum(Y

cc <- sort(c(0,pi_hat,1))
TP <- FP <- numeric(length(cc))
for(j in 1:length(cc)){

Yhat <- pi_hat >= cc[j]

TP[j] <- sum(Yhat == 1 & Y == 1) / nl
FP[j] <- sum(Yhat == 1 & Y == 0) / nO
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plot(TP ~ FP, type = "1", main = "ROC curve")
abline(0,1,1ty = 3)

ROC curve
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Can use ROC curves to compare models. !

ROC curves
o _|
e 0]
g
(©)
< -
o
=
<+ —— Backwards stepwise model
O /7 Model with age as only predlctor}
Al
g
o
=
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
FP

1Best to evaluate model performance on a set of data not used in fitting the model.
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