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Chp 4 Ex 8

It is of interest to test 𝐻0: 𝜇 ≤ 129 versus 𝐻1: 𝜇 > 129. The R code below computes the test
statistic and the critical value at 𝛼 = 0.01 for testing these hypotheses.

bp <- c(115,134,131,143,130,154,119,137,155,130,110,138)
mu0 <- 129
n <- length(bp)
xbar <- mean(bp)
s <- sd(bp)
Tstat <- (xbar - mu0)/( s / sqrt(n))
alpha <- 0.01
tcrit <- qt(1-alpha,n - 1)

The value of the test statistic is 𝑇stat = 0.993901, which does not exceed the critical value
𝑡11,0.01 = 2.7180792. So we fail to reject 𝐻0. There is insufficient evidence to claim that the
average blood pressure in this community exceeds 129.

The next chunk of R code compute the p-value.

pval <- 1 - pt(Tstat,n-1)

The p-value is 0.1708158, so we would fail to reject 𝐻0 for all significance levels less than
0.1708158.

We can obtain these results with the t.test() function as follows:

t.test(bp,mu = mu0,alternative="greater")

One Sample t-test
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data: bp
t = 0.9939, df = 11, p-value = 0.1708
alternative hypothesis: true mean is greater than 129
95 percent confidence interval:
125.7724 Inf
sample estimates:
mean of x
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Chp 4 Ex 19

The following R code reads in the data builds the 95% confidence interval.

hl <- c(2.50,2.20,1.60,1.30,
1.20,1.60,2.20,2.20,
2.60,1.00,1.50,3.15,
1.44,1.26,1.98,1.98,
1.87,2.31,1.4,
2.48,2.80,0.69)

n <- length(hl)
xbar <- mean(hl)
s <- sd(hl)
alpha <- 0.05
lo95 <- xbar - qt(1-alpha/2,n-1) * s / sqrt(n)
up95 <- xbar + qt(1-alpha/2,n-1) * s / sqrt(n)

A 95% confidence interval for the true mean half life of Amikacin is (1.5961643, 2.1547448).
This can also be obtained with the t.test() function.

t.test(hl)

One Sample t-test

data: hl
t = 13.965, df = 21, p-value = 4.237e-12
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
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1.596164 2.154745
sample estimates:
mean of x
1.875455

Chp 4 Ex 20

alpha <- 0.10
lo90 <- xbar - qt(1-alpha/2,n-1) * s / sqrt(n)
up90 <- xbar + qt(1-alpha/2,n-1) * s / sqrt(n)

A 90% confidence interval for the true mean half life of Amikacin is (1.6443603, 2.1065488).
This can also be obtained with the t.test() function.

t.test(hl, conf.level = 0.90)

One Sample t-test

data: hl
t = 13.965, df = 21, p-value = 4.237e-12
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
1.644360 2.106549
sample estimates:
mean of x
1.875455

Chp 5 Ex 10

The following R code reads in the data.

before <- c(12,16,10,17,12,15)
after <- c(15,16,15,18,14,17)
d <- after - before
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a)

Let 𝜇 be the mean difference (after minus before) in the employees’ self-ratings of their knowl-
edge. We wish to test 𝐻0: 𝜇 ≤ 0 versus 𝐻1: 𝜇 > 0.

alpha <- 0.05
mu0 <- 0
n <- length(d)
xbar <- mean(d)
s <- sd(d)
Tstat <- (xbar - mu0) / (s / sqrt(n))
pval <- 1 - pt(Tstat,n-1)

The p-value is 0.0137146, which is quite small (less than the commonly used significance level
𝛼 = 0.05), so there is fairly strong evidence that the employees believe they have gained
knowledge from the seminar.

b)

It could be that the employees who did not return a follow-up rating did so because they
did not learn anything from the seminar; in this case, if they had reported their follow-up
ratings, the complete data may not have carried as much evidence in favor of the effectiveness
of the seminar. On the other hand, if those who did not return a follow-up rating learned
more from the seminar than those who did return a follow-up rating, the complete data would
have carried even stronger evidence in favor of the seminar. When data is missing like this,
one must investigate whether the missing values would have contributed in such a way as to
change the outcome of the study.

Chp 7 Ex 7

The following R code reads in the data set.

heatcost <- read.table(file = "Data Tables 4th edition/Chapter 7/datatab_7_19.prn",
header = TRUE)

head(heatcost)

mo day tavg kwh
1 9 19 77.5 45
2 9 20 80.0 73
3 9 21 78.0 43
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4 9 22 78.5 61
5 9 23 77.5 52
6 9 24 83.0 56

a)

The following R code makes a scatterplot of power consumption versus temperature.

plot(kwh ~ tavg, data = heatcost)
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b)

We now fit a simple linear regression model to estimate the linear effect of the temperature
on power consumption.

x <- heatcost$tavg
Y <- heatcost$kwh
b1 <- cor(x,Y) * sd(Y) / sd(x)
b0 <- mean(Y) - b1 * mean(x)

plot(Y~x)
abline(b0,b1)
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The estimated regression function is

Kwh = −97.9238928 + 2.0010054 ⋅ Tavg,

according to which an increase in the temperature by 1 degree is associated with an increase
in power consumption by 2.0010054 kilowatt hours. Of course, this is only an estimate.

The following code constructs a 95% confidence interval for the slope parameter 𝛽1:

# estimate sigma
n <- length(Y)
Yhat <- b0 + x * b1
ehat <- Y - Yhat
sghat <- sqrt(sum(ehat^2) / (n-2))

# construct confidence interval
alpha <- 0.05
Sxx <- sum((x - mean(x))^2)
tval <- qt(1-alpha/2,n-2)
lo <- b1 - tval * sghat / sqrt(Sxx)
up <- b1 + tval * sghat / sqrt(Sxx)

The 95% confidence interval for 𝛽1 is (1.6170855, 2.3849253).
To check whether the temperature has a linear effect on power consumption, we would test
the hypothesis 𝐻0: 𝛽1 = 0 versus 𝐻1: 𝛽1 ≠ 0. The following R code computes the p-value for
testing this set of hypotheses.
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Tstat <- b1 / (sghat / sqrt(Sxx))
pval <- 2*(1 - pt(abs(Tstat),n-2))

We obtain the p-value is 1.110223 × 10−13.

All of these results can be obtained using the lm() function, as shown below:

lm_out <- lm(kwh ~ tavg, data = heatcost)
summary(lm_out)

Call:
lm(formula = kwh ~ tavg, data = heatcost)

Residuals:
Min 1Q Median 3Q Max

-20.150 -3.647 -0.152 3.348 23.852

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -97.9239 13.8616 -7.064 8.18e-09 ***
tavg 2.0010 0.1906 10.498 1.11e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.388 on 45 degrees of freedom
Multiple R-squared: 0.7101, Adjusted R-squared: 0.7036
F-statistic: 110.2 on 1 and 45 DF, p-value: 1.111e-13

A 95% confidence for the true regression coefficient 𝛽1 describing the relationship between
power consumption and temperature can be retrieved from the fitted model with the
confint() function.

confint(lm_out)

2.5 % 97.5 %
(Intercept) -125.842544 -70.005242
tavg 1.617086 2.384925
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c)

The following code produces a residuals versus fitted values plot for the fitted model.

plot(lm_out,which = 1)
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There is no evidence in the residuals versus fitted values plot of a nonlinear relationship
between power consumption and temperature, as the residuals appear to be centered around
zero across the entire range of fitted values. There is some evidence that the variance of
the power consumption is smaller at smaller fitted values, as the plot shows a decrease in
variability of the residuals toward the left, but it does not appear to be a very strong pattern.
The assumptions of the linear model appear to be approximately satisfied.
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