
STAT 516 hw 2
Solutions

Chp 8 Ex 3

The code below reads in the asphalt data set.

asphalt <- read.table(file = "Data Tables 4th edition/Chapter 8/datatab_8_24.prn",
header = TRUE)

head(asphalt)

obs x1 x2 x3 y1 y2
1 1 5.3 0.02 77 42 3.20
2 2 5.3 0.02 32 481 0.73
3 3 5.3 0.02 0 543 0.16
4 4 6.0 2.00 77 609 1.44
5 5 7.8 0.20 77 444 3.68
6 6 8.0 2.00 104 194 3.11

Stress at which a specimen fails

First we regress the stress at which a specimen failed (𝑌1) on the predictor variables. We fit
a multiple linear regression model with the lm() function.

lm_stress <- lm(y1 ~ x1 + x2 + x3, data = asphalt)
summary(lm_stress)

Call:
lm(formula = y1 ~ x1 + x2 + x3, data = asphalt)

Residuals:
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Min 1Q Median 3Q Max
-168.380 -131.124 -0.743 74.773 235.765

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 700.6180 125.8722 5.566 5.40e-05 ***
x1 -1.5257 13.0242 -0.117 0.908302
x2 175.9839 35.6550 4.936 0.000179 ***
x3 -6.6971 0.8847 -7.570 1.69e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137.9 on 15 degrees of freedom
Multiple R-squared: 0.8376, Adjusted R-squared: 0.8051
F-statistic: 25.79 on 3 and 15 DF, p-value: 3.599e-06

Before interpreting the results, we check the residuals versus fitted values plot to see if there is
any pattern in the residuals that would indicate nonlinearity in the relationship of the response
to the predictors or nonconstant variance of the response given the predictors.

plot(lm_stress,which=1)
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The red line which the plot() function draws through the points in the residuals versus fitted
values plot suggests nonlinearity in the relationship between the response and the regressor
variables. However, it is based on quite a small number of points, so the strength of the
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suggestion is quite small. If no red line were plotted, one probably not from this plot suspect
nonlinearity. It is likely safe to assume the the relationship, if not exactly linear, is close
enough to linear for the linear model to be useful.

We now check the Normal quantile-quantile plot of the residuals to see if we should assume
Normality of the error terms in the multiple linear regression model.

plot(lm_stress,which = 2)
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The Normal quantile-quantile plot indicates some departure from Normality in the lower tail of
the distribution of the residuals (lower left part of the plot). Apart from this, the data points
fall roughly along a straight line, and so it is likely safe to proceed under the assumption that
the error terms have the Normal distribution.

Taking the assumptions of the multiple linear regression model to be satisfied, we may now
interpret the output printed by the summary() function applied to the linear model object
returned by the lm() function.

We see that the fitted model is

𝑌1 = 700.62 + −1.53𝑋1 + 175.98𝑋2 + −6.7𝑋3,

according to which the stress at which a specimen fails (𝑌1) is negatively affected by increases
in the percent binder (𝑋1) and in the ambient temperature (𝑋3) and positively affected by
the loading rate (𝑋2).

The p-values for testing 𝐻0: 𝛽𝑗 = 0 for 𝑗 = 1, 2, 3, indicate that the estimated effect of percent
binder (𝑋1) may be spurious—that is, it is not different enough from zero to be statistically
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significant, as its p-value is very large. The estimated effects of ambient temperature (𝑋2) and
loading rate (𝑋3), however, do appear to reflect real effects, as the p-values are very small.

The code below prints confidence intervals for the coefficient values.

confint(lm_stress)

2.5 % 97.5 %
(Intercept) 432.327719 968.908377
x1 -29.286064 26.234706
x2 99.987067 251.980812
x3 -8.582839 -4.811437

We see that the 95% confidence intervals for the ambient temperature (𝑋2) and loading rate
(𝑋3) coefficients do not contain zero, whereas that of percent binder (𝑋1) does contain zero;
so it is plausible that percent binder (𝑋1) has no real linear relationship with the stress at
which a specimen fails (𝑌1).

Strain at which a specimen fails

Now we carry out a similar analysis with the strain at which a specimen failed (𝑌2) as the
response.

lm_strain <- lm(y2 ~ x1 + x2 + x3, data = asphalt)
summary(lm_strain)

Call:
lm(formula = y2 ~ x1 + x2 + x3, data = asphalt)

Residuals:
Min 1Q Median 3Q Max

-3.5466 -1.4827 -0.1190 0.6097 5.0135

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.61130 2.04575 -2.743 0.015100 *
x1 0.66754 0.21168 3.154 0.006558 **
x2 -1.23535 0.57949 -2.132 0.049966 *
x3 0.07319 0.01438 5.090 0.000133 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.241 on 15 degrees of freedom
Multiple R-squared: 0.7601, Adjusted R-squared: 0.7121
F-statistic: 15.84 on 3 and 15 DF, p-value: 6.447e-05

Before we interpret the results, we check whether the multiple linear regression assumptions
are satisfied.

First we look at the residuals versus fitted values plot:

plot(lm_strain,which=1)
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In this plot we see a pretty clear indication of nonlinearity in the relationship between the
response and the covariates. Even if the red line were removed, the ‘swoosh’ pattern in the
points would still be apparent.

Unless we transform the data, the analysis should stop here, because the assumptions of the
multiple linear regression model are not satisfied.

We cannot take the natural log of 𝑌2, because one of the values is zero. In this case, one
can try adding a small constant to all the values and then taking the log. Let’s consider the
transformed response log(𝑌2 + 0.1).

lm_logstrain <- lm(log(y2+.1) ~ x1 + x2 + x3*x3, data = asphalt)
plot(lm_logstrain,which = 1)
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plot(lm_logstrain,which = 2)
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Now the residuals versus fitted values plot and the Normal quantile-quantile plot suggest
that the multiple linear regression assumptions are satisfied under the transformed response
log(𝑌2 + 0.1).
The fitted model is

log(𝑌2 + 0.1) = −2.361 + 0.105𝑋1 + −0.381𝑋2 + 0.038𝑋3.
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Below is a summary of the linear model fit:

summary(lm_logstrain)

Call:
lm(formula = log(y2 + 0.1) ~ x1 + x2 + x3 * x3, data = asphalt)

Residuals:
Min 1Q Median 3Q Max

-0.64147 -0.24218 0.02024 0.29730 0.50954

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.36132 0.37276 -6.335 1.34e-05 ***
x1 0.10472 0.03857 2.715 0.01597 *
x2 -0.38124 0.10559 -3.611 0.00257 **
x3 0.03805 0.00262 14.525 3.05e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4083 on 15 degrees of freedom
Multiple R-squared: 0.9423, Adjusted R-squared: 0.9308
F-statistic: 81.66 on 3 and 15 DF, p-value: 1.615e-09

From the summary we can see that all three of the covariates appear to have significant effects
on the transformed response, as the p-values are all quite small.

An interpretation, for example, of the estimated coefficient on 𝑋1, is that for an increase in
𝑋1, the percent binder, of one unit, the strain at which a specimen fails increases by 10.5
percent (ignoring the small constant 0.1 that we added to all the response values before the
log transformation).

Chp 8 Ex 5

We first read in the data:

tree <- read.table(file = "Data Tables 4th edition/Chapter 8/datatab_8_26.prn",
header = TRUE)

head(tree)
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obs dbh height age grav weight
1 1 5.7 34 10 0.409 174
2 2 8.1 68 17 0.501 745
3 3 8.3 70 17 0.445 814
4 4 7.0 54 17 0.442 408
5 5 6.2 37 12 0.353 226
6 6 11.4 79 27 0.429 1675

a)

Now we fit a multiple linear regression model with the variable weight as the response and
make the residuals versus fitted values plot.

lm_tree <- lm(weight ~ ., data = tree)
plot(lm_tree,which = 1)
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From the residuals vs fitted values plot, the relationship between the response and the covari-
ates appears to be nonlinear. So the fitted model is not useful.

b)

Since it is natural to assume the weight is equal to something like the height times the diameter
(the volume), that is weight ≈ height×diameter, then by the rules of logarithms log(weight) ≈
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log(height) + log(diameter). This suggests fitting a linear model after log-transforming these
three variables.

lm_logtree <- lm(log(weight) ~ log(dbh) + log(height) + grav + age, data = tree)
plot(lm_logtree,which = 1)
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plot(lm_logtree,which = 2)

−2 −1 0 1 2

−
3

−
1

1
2

3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(log(weight) ~ log(dbh) + log(height) + grav + age)

Q−Q Residuals

18

16

37

9



The residuals versus fitted values plot indicates that the linear model is a good fit to the
data, and the Normal quantile-quantile plot, in spite of showing a few low-outlying residuals,
suggests that it is likely safe to assume that the error terms follow a Normal distribution.
Actually, since the sample size is rather large (𝑛 ≥ 30), it is likely safe to assume that the least
squares estimators of the regression coefficients have approximately a Normal distribution even
if the error terms do not.

From here, we note that the fitted model is

log(weight) = −1.984 + 2.156 log(dbh) + 0.968 log(height) + 0.176grav + −0.009age,

which we can see from the summary:

summary(lm_logtree)

Call:
lm(formula = log(weight) ~ log(dbh) + log(height) + grav + age,

data = tree)

Residuals:
Min 1Q Median 3Q Max

-0.40874 -0.05508 0.01500 0.05526 0.30120

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.983517 0.418596 -4.738 2.48e-05 ***
log(dbh) 2.156404 0.116623 18.490 < 2e-16 ***
log(height) 0.968157 0.162623 5.953 4.64e-07 ***
grav 0.175618 0.608581 0.289 0.774
age -0.009175 0.004463 -2.056 0.046 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1257 on 42 degrees of freedom
Multiple R-squared: 0.9822, Adjusted R-squared: 0.9805
F-statistic: 579 on 4 and 42 DF, p-value: < 2.2e-16

From the summary we can also see that the effects of log(dbh) and log(height) have very small
p-values, so their effect on the weight is highly significant. The covariate grav does not appear
to have a significant effect, and the covariate age has an effect which is only barely significant
if one compares it to a 0.05 significance level.
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Chp 8 Ex 7

Here we read the data into R:

irrigation <- read.table(file = "Data Tables 4th edition/Chapter 8/datatab_8_28.prn",
header = TRUE)

head(irrigation)

obs distance time
1 1 85 0.15
2 2 169 0.48
3 3 251 0.95
4 4 315 1.37
5 5 408 2.08
6 6 450 2.53

a)

The code below makes a scatterplot of the distance versus the time variable.

plot(distance ~ time, data = irrigation)
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The relationship appears nonlinear. The following code fits a simple linear regression model
and produces the residuals versus fitted values plot.
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lm_out <- lm(distance ~ time, data = irrigation)
plot(lm_out, which = 1)
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The nonlinearity in the relationship between the distance and time variables is much more
apparent in the residuals versus fitted values plot.

b), c)

We now fit a model which includes time and the square of time.

irrigation$time2 <- irrigation$time^2
lm2_out <- lm(distance ~ time + time2, data = irrigation )
plot(lm2_out,which = 1)
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This model is still a poor fit!
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