
STAT 516 hw 3
Solutions

Chp 8 Ex 2

a)

We have 𝑝 = 10 and 𝑛 = 500 with 𝑅2 = 0.07. The relationship between 𝑅2 and the test
statistic for the overall F-test gives

𝐹stat = 𝑛 − (𝑝 + 1)
𝑝

𝑅2

1 − 𝑅2 = 500 − (10 + 1)
10

0.07
1 − 0.07 = 3.6806452.

We reject 𝐻0: 𝛽𝑗 = 0 for 𝑗 = 1, … , 10 (that is, the hypothesis that all the regression coefficients
are equal to zero) at significance level 0.05 if 𝐹stat > 𝐹10,500−(10+1),0.05 = 1.8500646.

Since 3.6806452 > 1.8500646, we reject 𝐻0. So there is some statistically significant relation-
ship between the covariates and the response, even though the value of 𝑅2 is small.

b)

Yes, the sociologist, having rejected 𝐻0: 𝛽𝑗 = 0 for 𝑗 = 1, … , 10, can accept the alternative
hypothesis, which is that at least one of the covariates has a nonzero slope coefficient.

c)

The small value of 𝑅2 indicates that the model explains only a small proportion of the total
variability in the responses. Even though there is a statistically significant relationship between
the response and at least one of the predictors, the small value of 𝑅2 suggests that predictions
based on this model will not be very accurate.
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d)

Under 𝑛 = 50, we would have

𝐹stat = 𝑛 − (𝑝 + 1)
𝑝

𝑅2

1 − 𝑅2 = 50 − (10 + 1)
10

0.07
1 − 0.07 = 0.2935484,

which we would compare to the critical value 𝐹10,50−11,0.05 = 2.083869. We would fail to reject
the null hypothesis that all the slope coefficients are equal to zero. So under the smaller sample
size, the same value of 𝑅2 would not indicate a statistically significant relationship between
the covariates and the response.

Chp 8 Ex 8

goalmade <- read.table(file = "Data Tables 4th edition/Chapter 8/datatab_8_29.prn",
header= TRUE)

head(goalmade)

obs weight height dash100 goalmade
1 1 130 71 11.50 15
2 2 149 74 12.23 19
3 3 170 70 12.26 11
4 4 177 71 12.65 15
5 5 188 69 10.26 12
6 6 210 73 12.76 17

a)

Use the lm() function to perform the regression:

lm_out <- lm(goalmade ~ weight + height + dash100, data = goalmade)
summary(lm_out)

Call:
lm(formula = goalmade ~ weight + height + dash100, data = goalmade)

Residuals:
Min 1Q Median 3Q Max
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-2.2904 -0.2108 0.1617 0.4455 1.0493

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -67.364828 5.219781 -12.906 1.88e-11 ***
weight -0.010570 0.005052 -2.092 0.0487 *
height 1.202711 0.062687 19.186 8.60e-15 ***
dash100 -0.141724 0.216264 -0.655 0.5194
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7583 on 21 degrees of freedom
Multiple R-squared: 0.9478, Adjusted R-squared: 0.9403
F-statistic: 127.1 on 3 and 21 DF, p-value: 1.267e-13

The overall F-test rejects the null hypothesis that none of the regressors are related to the
response. The weight and height variables are significant at the 𝛼 = 0.05 significance level,
though the p-value for the weight variable is just slightly less than 0.05. While height is
positively related to goals made, weight appears to be negatively related.

b)

A good way to visualize multicollinearity is to make pairwise scatter plots of all the variables:

plot(goalmade[,-1]) # remove first column "obs"
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We see that height is positively correlated with goals made, but no other strong correlations
are apparent in this plot. Multicollinearity refers only to correlations among the predictors,
so from this plot, it appears that there is very little multicollinearity in these data.

c)

To check for outliers we can look at the residuals versus fitted values plot:

plot(lm_out,which = 1)
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We see that there are a couple of large residuals, which may correspond to outliers.

Now make a plot of Cook’s D values:

plot(lm_out, which = 4)
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There are a few points which have Cook’s D values rather larger than the other points. The
most extreme observations are 3 and 20. Both of these players scored below the predicted
value based on their covariate values (had negative residuals).

d)

One could try fitting a model after removing these outlying observations.

Suppose we remove observations 3 and 20.

Then we obtain:

goalmade2 <- goalmade[-c(3,20),]
lm2_out <- lm(goalmade ~ weight + height + dash100, data = goalmade2)
summary(lm2_out)

Call:
lm(formula = goalmade ~ weight + height + dash100, data = goalmade2)

Residuals:
Min 1Q Median 3Q Max

-1.2299 -0.2430 0.1706 0.3108 0.9080

Coefficients:

5



Estimate Std. Error t value Pr(>|t|)
(Intercept) -68.584438 4.263754 -16.085 1.60e-12 ***
weight -0.012149 0.003431 -3.541 0.00218 **
height 1.199446 0.050818 23.603 1.54e-15 ***
dash100 0.016816 0.152003 0.111 0.91307
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5128 on 19 degrees of freedom
Multiple R-squared: 0.9686, Adjusted R-squared: 0.9637
F-statistic: 195.6 on 3 and 19 DF, p-value: 1.855e-14

We see that the resulting model is not very different. Height and weight are still significant
predictors (weight appears now to be more significant) and each still influences the response
in the same direction.

This suggests that the presence of the outliers in the data set does not change the fitted model
by much.

Chp 8 Ex 14

# use na.strings = "." to properly encode the missing values
hp <- read.table("Data Tables 4th edition/Chapter 1/datatab_1_2.prn",

header = FALSE,
na.strings = ".")

colnames(hp) <- c("obs","zip","age","bed",
"bath","size","lot","exter",
"garage","fp","price")

head(hp)

obs zip age bed bath size lot exter garage fp price
1 1 3 21 3 3 951 64904 other 0 0 30000
2 2 3 21 3 2 1036 217800 frame 0 0 39900
3 3 4 7 1 1 676 54450 other 2 0 46500
4 4 3 6 3 2 1456 51836 other 0 1 48600
5 5 1 51 3 1 1186 10857 other 1 0 51500
6 6 2 19 3 2 1456 40075 frame 0 0 56990
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a)

i)

Select a model using backward selection with AIC.

lm_all <- lm(price ~ age + bed + bath + size + lot,data = hp)
step(lm_all,direction="backward",scope= formula(lm_all),trace = 0)

Call:
lm(formula = price ~ age + size + lot, data = hp)

Coefficients:
(Intercept) age size lot
-4.247e+04 -1.053e+03 9.062e+01 3.028e-01

The chosen model uses only the age, size, and lot variables.

lm_chosen <- lm(price ~ age + size + lot,data = hp)
summary(lm_chosen)

Call:
lm(formula = price ~ age + size + lot, data = hp)

Residuals:
Min 1Q Median 3Q Max

-57842 -23624 -3599 17768 112067

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.247e+04 1.826e+04 -2.326 0.023667 *
age -1.053e+03 4.134e+02 -2.547 0.013639 *
size 9.062e+01 6.503e+00 13.934 < 2e-16 ***
lot 3.028e-01 8.465e-02 3.577 0.000726 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39550 on 56 degrees of freedom
(9 observations deleted due to missingness)
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Multiple R-squared: 0.8063, Adjusted R-squared: 0.796
F-statistic: 77.72 on 3 and 56 DF, p-value: < 2.2e-16

Now look at the residuals versus fitted values plot.

plot(lm_chosen,which = 1)
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The residuals versus fitted values plot shows that the linear regression model is a poor fit to
these data. There appears to be an “elbow” in the residuals versus fitted values plot around
the fitted value 200000.

ii)

lt200k <- which(hp$price <= 200000)
hp_lt200k <- hp[lt200k,]
lm_lt200k <- lm(price ~ age + size + lot,data = hp_lt200k)
summary(lm_lt200k)

Call:
lm(formula = price ~ age + size + lot, data = hp_lt200k)

Residuals:
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Min 1Q Median 3Q Max
-42107 -8313 -169 8247 46282

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7401.34367 9910.82934 0.747 0.459
age -313.26441 207.00640 -1.513 0.137
size 56.26836 4.24856 13.244 <2e-16 ***
lot 0.06286 0.05095 1.234 0.223
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18450 on 47 degrees of freedom
(8 observations deleted due to missingness)

Multiple R-squared: 0.7986, Adjusted R-squared: 0.7858
F-statistic: 62.14 on 3 and 47 DF, p-value: < 2.2e-16

The fitted model has a fairly high value of 𝑅2, suggesting that it might be good at making
predictions. Each variable appears to be an important predictor of the price (though we must
be cautious interpreting p-values after performing variable selection using the same data).

Now look at the residuals versus fitted values plot:

plot(lm_lt200k,which = 1)
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The residuals versus fitted values plot is much improved. There do not appear to be any
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extreme outliers.

plot(lm_lt200k,which = 4)
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One observation has Cook’s D above 1, but let’s leave this observation in.

The regression based on the homes with prices less than 200k is a better fit to the data, so it
will be more reliable for making predictions.

iii)

It could be useful for a home buyer to know its residual from one of these models. This is the
difference in its actual price and its predicted price based on its characteristics. A positive
residual may suggest that the home is over-priced, while a negative residual may mean that
the home is a good bargain.

b)

Consider also the fp and garage variables while doing backward stepwise regression:

# manually remove missing values before using the step() function
hp_lt200k_noNA <- hp_lt200k[!is.na(hp_lt200k$lot),]
lm_all <- lm(price ~ age + bed + bath + size + lot + fp + garage,data = hp_lt200k_noNA)
step(lm_all,direction="backward",scope= formula(lm_all),trace = 0)
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Call:
lm(formula = price ~ age + bed + size + garage, data = hp_lt200k_noNA)

Coefficients:
(Intercept) age bed size garage

34485.53 -293.12 -11227.23 53.52 10378.72

The garage variable was included.

lm_garage <- lm(price ~ age + bed + size + garage,data = hp_lt200k_noNA)
summary(lm_garage)

Call:
lm(formula = price ~ age + bed + size + garage, data = hp_lt200k_noNA)

Residuals:
Min 1Q Median 3Q Max

-31987 -8724 -3106 10853 30337

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 34485.526 10833.530 3.183 0.002612 **
age -293.120 170.069 -1.724 0.091508 .
bed -11227.226 3813.627 -2.944 0.005066 **
size 53.520 4.521 11.839 1.45e-15 ***
garage 10378.720 2574.571 4.031 0.000207 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15150 on 46 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.8671, Adjusted R-squared: 0.8555
F-statistic: 75.03 on 4 and 46 DF, p-value: < 2.2e-16

plot(lm_garage,which = 1)
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plot(lm_garage,which = 2)
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The model with the age, bed, size, and garage variables appears to be a pretty good model.
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Chp 8 Ex 16

a)

The test statistic of the full-reduced model F test is equal to

n <- 50
p <- 3
s <- 1
SSEred <- 256
SSEfull <- 194
Fstat <- ((SSEred - SSEfull)/s) / (SSEfull / (n - (p + 1)))

The p-value is

pval <- 1 - pf(Fstat,s,n-(p+1))
pval

[1] 0.0003812353

So we reject 𝐻0: 𝛽3 = 0.

b)

The value of the F statistic is the square of 𝑇stat = ̂𝛽3
𝜎̂√Ω33/𝑛 . Since ̂𝛽3 = 2.1 is positive, 𝑇stat

is the positive square root of the F statistic value.

Tstat <- sqrt(Fstat)
Tstat

[1] 3.834192

c)

The estimated standard error of ̂𝛽3, which is given by se{ ̂𝛽3} = 𝜎̂√Ω33/𝑛, is equal to
̂𝛽3/𝑇stat.
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b3hat <- 2.1
se_b3hat <- b3hat / Tstat
se_b3hat

[1] 0.5477034

From here, a 95% confidence interval for 𝛽3 can be constructed as

lo <- b3hat - qt(.975,n - (p + 1)) * se_b3hat
up <- b3hat + qt(.975,n - (p + 1)) * se_b3hat
c(lo,up)

[1] 0.9975303 3.2024697

Chp 8 Ex 19

a)

For Model 1:

• SSReg = SSTotal 𝑅2 = 45.778 ⋅ 0.07 = 3.20446,
• SSError = SSTotal − SSReg = 45.778 − 3.20446 = 42.57354
• 𝐹stat = SSReg /𝑝

SSError /(𝑛−(𝑝+1)) = (3.20446/2)/(42.57354/(100 − (2 + 1))) = 3.650538
• p-value is 𝑃(𝐹 > 3.650538), where 𝐹 ∼ 𝐹2,97. This is 1 - pf(3.650538,2,97) =

0.0296089.

So the overall F test rejects the null hypothesis.

For Model 2:

• SSReg = SSTotal 𝑅2 = 45.778 ⋅ 0.19 = 8.69782,
• SSError = SSTotal − SSReg = 45.778 − 8.69782 = 37.08018
• 𝐹stat = SSReg /𝑝

SSError /(𝑛−(𝑝+1)) = (8.69782/4)/(37.08018/(100 − (4 + 1))) = 5.570988
• p-value is 𝑃 (𝐹 > 5.570988), where 𝐹 ∼ 𝐹4,95. This is 1 - pf(5.570988,4,95) =

4.5094394 × 10−4.

So the overall F test rejects the null hypothesis for Model 2 also.
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b)

The T statistic is −0.56/0.17 = −3.294, which is greater in absolute value than 𝑡95,0.025 =
qt(.975,95) = 1.985251, so we conclude that the type of work is associated with the re-
sponse.

c)

A 95% confidence interval for the coefficient corresponding to type of work is given by

−0.56 ± (1.985251)(0.17) = (−0.897, −0.223).

d)

The full-reduced model F test of whether type of work and employment length make a contri-
bution to the model has test statistic equal to

(42.57354 − 37.08018)/2
37.08018/(100 − (4 + 1)) = 7.037037

The critical value at significance level 0.05 is 𝐹2,95,0.05 = qf(.95,2,95) =3.0922174.

So we reject the null hypothesis that type of work and employment length are uninformative
to the response.
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