
STAT 516 hw 6
Solutions

Chp 6 Ex 9

Here we read in the data. We can use read.csv with the colClasses argument as specified
below to read in the data such that the columns are assigned the appropriate classes.

tensile <- read.csv("Data Tables 4th edition/Chapter 6/datatab_6_26.prn",
sep = " ",
colClasses = c("factor","numeric"))

We assume the model 𝑌𝑖𝑗 = 𝜇 + 𝑆𝑖 + 𝜀𝑖𝑗 for 𝑖 = 1, … , 4 and 𝑗 = 1, … , 4, where 𝜇 is the overall
mean,d 𝑆1, … , 𝑆4 are independent Normal(0, 𝜎2

𝑆) random effects for the suppliers, and the 𝜀𝑖𝑗
are Normal(0, 𝜎2

𝜀) are error terms.

boxplot(tensile ~ supplier, data = tensile)
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We can obtain the test statistic for testing 𝐻0: 𝜎2
𝑆 = 0 with the anova() function on the lm()

output.
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lm_out <- lm(tensile ~ supplier, data = tensile)
anova(lm_out)

Analysis of Variance Table

Response: tensile
Df Sum Sq Mean Sq F value Pr(>F)

supplier 3 7978.2 2659.40 19.044 7.401e-05 ***
Residuals 12 1675.7 139.65
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The very small p value indicates strong evidence of significant variability in the tensile strength
of the sheet metal from different suppliers.

The lmer() function provides estimates of the variance components.

library(lmerTest)

Loading required package: lme4

Loading required package: Matrix

Attaching package: 'lmerTest'

The following object is masked from 'package:lme4':

lmer

The following object is masked from 'package:stats':

step

lmer_out <- lmer(tensile ~ 1 + (1|supplier), data = tensile)
lmer_out
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Linear mixed model fit by REML ['lmerModLmerTest']
Formula: tensile ~ 1 + (1 | supplier)

Data: tensile
REML criterion at convergence: 128.2676
Random effects:
Groups Name Std.Dev.
supplier (Intercept) 25.10
Residual 11.82
Number of obs: 16, groups: supplier, 4
Fixed Effects:
(Intercept)

49.44

We obtain 𝜎̂𝑆 = 25.10 and 𝜎̂𝜀 = 11.82.

It also makes sense to check the residuals versus fitted values plot.

plot(lmer_out)
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We see that there is some fanning in the residuals, with a wider residual variance at larger
fitted values.

yhat <- predict(lmer_out)
ehat <- tensile$tensile - yhat
qqnorm(scale(ehat))
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abline(0,1)

−2 −1 0 1 2

−
2

−
1

0
1

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

The Normal Q-Q plot of the residuals, however, does not show any great departure from
Normality, so it is perhaps best not to transform the data.

Chp 10 Ex 4

Here we read in the data.

cotton <- read.csv("Data Tables 4th edition/Chapter 10/datatab_10_28.prn", sep = " ",
colClasses = c("factor","factor","factor","numeric","numeric"))

head(cotton)

rep var trt brate mrate
1 1 1 1 2.98 42
2 1 1 2 3.08 42
3 1 2 1 2.75 42
4 1 2 2 2.75 42
5 1 3 1 2.83 42
6 1 3 2 3.11 42

The experiment is a randomized complete block split-plot design; the whole plot factor is the
variety, the split-plot factor is the treatment, and the blocks are the replications.
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Analysis with mrate as the response

First print the ANOVA table using anova() on the lm() output.

lm_out <- lm(mrate ~ var + trt + var:trt + rep + rep:var, data = cotton)
anova(lm_out)

Analysis of Variance Table

Response: mrate
Df Sum Sq Mean Sq F value Pr(>F)

var 5 160.94 32.188 0.6099 0.6935
trt 1 4.69 4.687 0.0888 0.7691
rep 3 127.23 42.410 0.8037 0.5081
var:trt 5 481.94 96.387 1.8265 0.1583
var:rep 15 1235.65 82.376 1.5610 0.1828
Residuals 18 949.87 52.771

We must correct the F statistic and p value for var.

F_var <- 32.188 / 82.376
p_var <- 1 - pf(F_var,5,15)

The correct F statistic is 0.3907449 and the correct p value is 0.8475051.

If we run anova() on the lmer() output using the R package lmerTest, we see that the p
value in the output does not match our adjusted p value:

library(lmerTest)
lmer_out <- lmer(mrate ~ var + trt + var:trt + (1|rep) + (1|rep:var), data = cotton)

boundary (singular) fit: see help('isSingular')

anova(lmer_out)

Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

var 112.17 22.434 5 18 0.4251 0.8252
trt 4.69 4.687 1 18 0.0888 0.7691
var:trt 481.94 96.387 5 18 1.8265 0.1583
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It turns out this is because the REML estimate of the variance component associated with
rep was equal to zero:

lmer_out

Linear mixed model fit by REML ['lmerModLmerTest']
Formula: mrate ~ var + trt + var:trt + (1 | rep) + (1 | rep:var)

Data: cotton
REML criterion at convergence: 268.072
Random effects:
Groups Name Std.Dev.
rep:var (Intercept) 3.387
rep (Intercept) 0.000
Residual 7.264
Number of obs: 48, groups: rep:var, 24; rep, 4
Fixed Effects:
(Intercept) var2 var3 var4 var5 var6

42.25 -3.25 1.25 -3.25 9.00 -5.25
trt2 var2:trt2 var3:trt2 var4:trt2 var5:trt2 var6:trt2
-2.75 5.50 2.50 4.00 -10.00 10.75

optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings

In this case, the lmer() package has a way of computing the p value for the whole plot factor
which is different from ours.

We see from our adjusted p-value for the effect of var and the p values for trt and the var-trt
interaction, that none of these have a significant effect on the response.

The interaction plot below may make it appear that the mean response of variety 5 under
treatment 1 is higher than the response mean at other variety and treatment combinations,
but, since the p values are large for all effects, we cannot conclude that the apparent difference
in the interaction plot indicates any real difference in treatment means.

interaction.plot(cotton$var, cotton$trt, cotton$mrate)
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Analysis with brate as the response

We obtain the ANOVA table using anova() on the lm() output.

lm_out <- lm(brate ~ var + trt + var:trt + rep + rep:var, data = cotton)
anova(lm_out)

Analysis of Variance Table

Response: brate
Df Sum Sq Mean Sq F value Pr(>F)

var 5 4.1428 0.82856 16.7205 3.269e-06 ***
trt 1 1.0710 1.07102 21.6134 0.0001996 ***
rep 3 0.8161 0.27204 5.4898 0.0074012 **
var:trt 5 0.5896 0.11791 2.3795 0.0799096 .
var:rep 15 2.1228 0.14152 2.8560 0.0182033 *
Residuals 18 0.8920 0.04955
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We must adjust the F statistic and p value for the var effect.

F_var <- 0.82856 / 0.14152
p_var <- 1 - pf(F_var,5,15)

The correct F statistic is 5.8547202 and the correct p value is 0.0034086.
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The anova() function on the lmer() output within the package lmerTest gives the same p
value.

lmer_out <- lmer(brate ~ var + trt + var:trt + (1|rep) + (1|rep:var), data = cotton)
anova(lmer_out)

Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

var 1.45058 0.29012 5 15 5.8546 0.0034088 **
trt 1.07102 1.07102 1 18 21.6133 0.0001996 ***
var:trt 0.58957 0.11791 5 18 2.3795 0.0799102 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It appears that the whole-plot and split-plot factors both have significant main effects; the
evidence for a interaction effect is fairly weak (p value 0.0799).

We make interaction plots:

interaction.plot(cotton$var,cotton$trt,cotton$brate)
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From these plots, and due to the small p values for testing for main effects, we can claim that
treatment 2 generally produces a higher response mean. Moreover, the apparent difference in
the response mean across varieties reflects true differences in means. We will not perform any
specific mean comparisons.
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Chp 10 Ex 6

This is a two-way factorial design with randomized blocks; the panel is the block, and time
and temperature are the fixed factors.

We first read in the data:

meat <- read.csv("Data Tables 4th edition/Chapter 10/datatab_10_30.prn", sep = " ",
colClasses = c("factor","factor","factor","numeric","factor"))

head(meat)

OBS TIME PANEL QUAL TEMP
1 1 0 1 2.38 2
2 5 0 2 2.19 2
3 9 2 1 2.74 2
4 13 2 2 2.50 2
5 17 4 1 2.75 2
6 21 4 2 2.74 2

Now we look at the ANOVA table.

lm_out <- lm(QUAL ~ TIME + TEMP + TIME:TEMP + PANEL, data = meat)
anova(lm_out)

Analysis of Variance Table

Response: QUAL
Df Sum Sq Mean Sq F value Pr(>F)

TIME 4 15.2717 3.8179 31.2138 4.109e-08 ***
TEMP 3 20.5439 6.8480 55.9863 1.269e-09 ***
PANEL 1 0.7784 0.7784 6.3640 0.020724 *
TIME:TEMP 12 4.8861 0.4072 3.3289 0.009518 **
Residuals 19 2.3240 0.1223
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The small p-values indicate significant interaction and main effects for the fixed factors as well
as a significant variability between the two panels.

interaction.plot(meat$TIME,meat$TEMP,meat$QUAL)

9



3
4

5
6

meat$TIME

m
ea

n 
of

  m
ea

t$
Q

U
A

L

0 13 2 4 8

   meat$TEMP

38
21
4.5
2

interaction.plot(meat$TEMP,meat$TIME,meat$QUAL)
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We will omit specific comparisons of means (though in order to be fully rigorous in our analysis,
we should make specific comparisons) and simply remark, in light of the fact that there are
significant main and interaction effects, that it appears higher temps and longer times generally
improve the ratings, and that at higher temperatures, the longer time seemed to have a greater
impact on the rating.
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