
STAT 516 sp 2024 exam 01
75 minutes, no calculators or notes allowed

1. Simple linear regression

Below is a scatterplot of 𝑛 = 40 data points (𝑥1, 𝑌1), … , (𝑥40, 𝑌40) with the least squares line
overlaid.

plot(Y~x)
abline(lm(Y~x))
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summary(lm(Y~x))

Call:
lm(formula = Y ~ x)

Residuals:
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Min 1Q Median 3Q Max
-4.5336 -0.6735 0.0845 0.7369 3.3597

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.87442 0.45380 4.131 0.000191 ***
x -0.23409 0.07469 -3.134 0.003315 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.389 on 38 degrees of freedom
Multiple R-squared: 0.2054, Adjusted R-squared: 0.1845
F-statistic: 9.824 on 1 and 38 DF, p-value: 0.003315

Some of the following questions refer to the above R output; some are general questions that
you can answer without referring to the R output.

(a) What do we call the quantity ∑𝑛𝑖=1(𝑌𝑖 − ̄𝑌𝑛)2 and what does it represent?

(b) What do we call the quantity ∑𝑛𝑖=1( ̂𝑌𝑖 − ̄𝑌𝑛)2 and what does it represent?

(c) Give the value shown in the R output for
∑𝑛𝑖=1( ̂𝑌𝑖 − ̄𝑌𝑛)2∑𝑛𝑖=1(𝑌𝑖 − ̄𝑌𝑛)2 . Interpret the value.

(d) Obtain the value of
∑𝑛𝑖=1(𝑌𝑖 − ̂𝑌𝑖)2𝑛 − 2 from the R output. What does it estimate?
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(e) Give the values of ̂𝛽0 and ̂𝛽1 from the R output. Give an interpretation of ̂𝛽1.

(f) Confidence intervals for 𝛽0 +𝛽1𝑥new as well as prediction intervals for 𝑌new at new values
of the predictor 𝑥new = 5 and 𝑥new = 9 are given below. For each interval, indicate
whether it is a CI or a PI and indicate to which value of 𝑥new it corresponds.

i. (-3.13, 2.67)

ii. (0.26, 1.15)

iii. (-0.94, 0.48)

iv. (-2.14, 3.55)

(g) Circle a data point on the scatterplot which would have a large value of Cook’s D.
Explain your choice of data point.

(h) Circle a data point on the scatterplot which would have a small value of Cook’s D.
Explain your choice of data point.

(i) There is a p-value which appears twice in the R output. Explain why the same p-value
appears twice.
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(j) Scatterplots of four different data sets are shown below. Indicate for which data set the
value of 𝐹stat = MSReg

MSError
would be

a. the greatest.
b. the smallest.

−2 −1 0 1 2 3

−2
0

2
4

x

Y

−2 −1 0 1 2 3

−2
0

2
4

x
Y

−2 −1 0 1 2 3

−2
0

2
4

x

Y

−2 −1 0 1 2 3

−2
0

2
4

x

Y

2. Multiple linear regression

The plot below shows scatterplots between all pairs of variables in a data set. Following that
is some regression output.

plot(data)
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lm1 <- lm(Y ~ x1 + x2 + x3, data = data)
summary(lm1)

Call:
lm(formula = Y ~ x1 + x2 + x3, data = data)

Residuals:
Min 1Q Median 3Q Max

-3.0473 -0.8223 -0.0535 0.6444 3.9421

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.43876 0.74379 0.590 0.55664
x1 -0.05382 0.08834 -0.609 0.54385
x2 0.42276 0.12841 3.292 0.00139 **
x3 0.02437 0.09137 0.267 0.79025
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.194 on 96 degrees of freedom
Multiple R-squared: 0.1277, Adjusted R-squared: 0.1004
F-statistic: 4.684 on 3 and 96 DF, p-value: 0.00426
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lm2 <- lm(Y ~ x2, data = data)
summary(lm2)

Call:
lm(formula = Y ~ x2, data = data)

Residuals:
Min 1Q Median 3Q Max

-2.9448 -0.7886 0.0424 0.6243 3.9408

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1536 0.6588 0.233 0.816083
x2 0.4506 0.1237 3.643 0.000433 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.188 on 98 degrees of freedom
Multiple R-squared: 0.1193, Adjusted R-squared: 0.1103
F-statistic: 13.27 on 1 and 98 DF, p-value: 0.0004333

Use the above R output to answer the following questions.

(a) For the model with all three predictors, give the value of each entry in the ANOVA table:

Source Df SS MS F value p-value
Regression i. ii. iii. iv. v.
Error vi. vii. viii.
Total ix. x.

Since you may not use a calculator, give expressions that could be evaluated in order to obtain
the right numbers!

i.

ii.

6

3 dfss

4689511.1945 3 SSpeg MSpy 57h
or 1199 96 EE SSry Spy MSpestP



iii.

iv.

v.

vi.

vii.

viii.

ix.

x.

(b) Which two predictor variables will have the highest variance inflation factors? How can
you tell?

(c) For the model with all three predictors, give the null and alternate hypotheses for the
overall F-test of significance.

(d) Suppose we wish to test simultaneously the significance of x1 and x2. Write down the
relevant null and alternate hypotheses.
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(e) Give the value of 𝑠 needed to compute the test statistic𝐹stat = (SSError(Reduced) − SSError(Full))/𝑠
SSError(Full)/(𝑛 − (𝑝 + 1))

of the full-reduced model F-test.

(f) The value of the test statistic 𝐹stat for the full-reduced model F-test is 0.464. Moreover,𝐹2,96,0.05 = 3.091. What do we conclude about the significance of x1 and x2?

3. Inference on the mean of a Normal distribution

Let 𝑋1, … , 𝑋𝑛 ind∼ Normal(𝜇, 𝜎2) and suppose we wish to test 𝐻0: 𝜇 = 1 versus 𝐻1: 𝜇 ≠ 1.
Let 𝑇stat = 𝑋̄𝑛 − 1𝑆𝑛/√𝑛
and suppose we reject 𝐻0 when |𝑇stat| > 𝑡𝑛−1,𝛼/2 for some significance level 𝛼. Answer the
following questions about the probability 𝑃(|𝑇stat| > 𝑡𝑛−1,𝛼/2), which is the probability of
rejecting 𝐻0, also called the power of the test.

(a) Suppose 𝜇 is truly equal to 1. Then give 𝑃(|𝑇stat| > 𝑡𝑛−1,𝛼/2)

(b) What happens to 𝑃(|𝑇stat| > 𝑡𝑛−1,𝛼/2) as 𝜇 moves away from 1?
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(c) Suppose 𝜇 is not equal to 1. What happens to 𝑃(|𝑇stat| > 𝑡𝑛−1,𝛼/2) if the sample size is
increased?

(d) Suppose 𝜇 is not equal to 1. What is the effect on 𝑃(|𝑇stat| > 𝑡𝑛−1,𝛼/2) of a larger
variance 𝜎2?

(d) Suppose 𝜇 is truly equal to 1. What is the effect on 𝑃(|𝑇stat| > 𝑡𝑛−1,𝛼/2) of a larger
sample size 𝑛?
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It increase

Lange variance will decrease the power when M 1

It will have no effect einen the critical value

tun is calibrated based on the sample size

and α euch that for any sample size n
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