STAT 516 Lec 02

Review of simple linear regression

Karl Gregory

2026-02-16

1/63



Hemoglobin versus RBC count example

These data are a subset of the dataset Marcinkeviés et al. (2023)

Some outliers and missing values were removed.

link <- url("https://gregorkb.github.io/data/hrbc.csv")

data <- read.csv(link)

head(data)

hem rbc
14.8 5.27
15.7 5.26
11.4 3.98
13.6 4.64
12.6 4.44
12.5 4.96

OO WN =

sex
female
male
female
female
female
male

age
12.68
14.10
14.14
16.37
11.08
11.05

no
no
no

no

diag
appendicitis
appendicitis
appendicitis
appendicitis
appendicitis
appendicitis
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Hemoglobin level vs red blood cell count for n = 762 children.

plot(data$hem ~ data$rbc,
ylab = "Hemoglobin",
xlab = "RBC count")
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Simple linear regression

For (z,,Y7),...,(x,,Y,,), the simple linear regression model is

Y, =By + Bix; +¢, i=1,...,n

where
P x,,...,x, are the covariate or predictor values.
P V,,..,Y, are the response values.
P 3, and f3; are the intercept and slope parameters, respectively.
P ¢, ...,¢c, are independent Normal(0, o) error terms.

P o2 is the error term variance.
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Goals in simple linear regression

We will learn how to:

N A WN =

Estimate the intercept and slope parameters 3, and ;.
Estimate the error term variance o2.
Perform inference on f3;.

Build a confidence interval for 5, + 3%,
Build a prediction interval for Y at any x,.,-
Decompose the variation in Yinto sums of squares.
Check whether the model assumptions are satisfied.
Identify outliers and understand their effects.

at any =, .-
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L east-squares estimation of slope and intercept

The squared error criterion given by the sum

n

Q(bg, by) Z — (by + by;))?

i=1

of squared vertical distances of Y; from the line y = by + b, x.

We find Q(by, b, ) is minimized at (by, by ) = (B, 3, ), where

> Bozé—glf _
- (z;, —2,)(Y; =Y,)
_ =1
> s T w

provided 3°"  (z; —,)* > 0.

The least-squares line or fitted line is the line y = Bo + ,B]:):.
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Pearson’s correlation coefficient

Given (z,Y,,), ..., (x,,Y, ), the quantity

N @3 Y,
T2y =
VI @@, 2 (Y = Y,

is called Pearson’s correlation coefficient.

P> Describes strength and direction of linear relationships.
P Must satisfy r,y € [—1, 1].
P> Values close to zero indicate a weak linear relationship.
P Is related to 3, by

~ :;1,
61 = rzY?'

x

where Sy - and S, are the sample std devs of the Y and z values.
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Hemoglobin versus RBC count example (cont)

Find the least-squares line on the hemoglobin data.

Y <- data$hem
x <- data$rbc
n <- length(Y)
xbar <- mean(x)
Ybar <- mean(Y)

rxY <- cor(x,Y) # Pearson's correlation coefficient

blhat <- rxY * sd(Y)/sd(x)
bOhat <- Ybar - blhat * xbar
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plot(data$hem ~ data$rbc, ylab = "Hemoglobin", xlab = "RBC count")
abline(bOhat,blhat)

Hemoglobin
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RBC count
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Estimating the error term variance

After obtaining 30 and Bl, define the

P fitted values as Y; = f + f,z;
P residuals as & = Y; ¥

fori=1,...,n.

Then an unbiased estimator of o2 is given by

~ 1 LN
62 = E £2.
n—2 4
=1
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Confidence interval for the slope parameter
Assume €4, ..., €, £8; Normal(0,0?) and set S, = Z?:l (x; —7,)°
P> The slope estimator BAI is distributed as

Bl ~ Normal(ﬁl, UQ/Sxx)'

P “Studentizing” the above gives
b=
P Soa (1 —a)100% confidence interval for 3, is

ﬁl + tn72,a/26-/ \% sz

P We often write 5.6.(3,) = 6/1/S,,. s.e. for standard error.

~t1

n—2-

Exercise: Justify the Cl using the sampling distribution result.
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Hemoglobin versus RBC count example (cont)

Obtain an estimate of the error term variance.

Yhat <- bOhat + blhat * x
ehat <- Y - Yhat
sgsqghat <- sum(ehat~2)/(n-2)

We obtain 62 = 0.626.

Now construct a 95% confidence interval for ;.

alpha <- 0.05

Sxx <- sum((x - xbar) 2)

ta2 <- qt(1 - alpha/2, df = n - 2)

lo <- bilhat - ta2 * sqrt(sgsqhat / Sxx)
up <- blhat + ta2 * sqrt(sgsqhat / Sxx)

The 95% Cl is (2.011,2.314).
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Tests of hypotheses about the slope

We most often test hypotheses about 3; of the form

Hy: 8,20 o Hy ;=0 o Hy ;<0
H;: p; <0 H;: p5,#0 Hi: p; >0.

Reject or fail to reject H(, based on the value of the test statistic
B
test T~ o
Rejection rules for the above at significance level « are

thst < _tn72

The corresponding p-values are, with T" ~ ¢ the probabilities

n—21

P(T < Ttest) or 2x P(T > |Ttest|) or P(T > Ttest)‘

,Q or |thst| > tn72,o¢/2 or thst > tn72,a'
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Hemoglobin versus RBC count example (cont)

Test the hypotheses Hy: 5; =0 vs Hy: 3 # 0 at a = 0.05.

alpha <- 0.05

Tstat <- blhat / sqrt(sgsghat/Sxx)

crit <- qt(l-alpha/2, df = n - 2)

pval <- 2%(1 - pt(abs(Tstat), df = n - 2))

We get T oo = 28.021, £, 5 o/ = 1.963, and p-value 0; we reject H,,.
Test the hypotheses Hy: 8; < 2vs Hy: 5; > 2.
Tstat <- (blhat - 2) / sqrt(sgsghat/Sxx)

crit <- qt(l-alpha, df = n - 2)
pval <- 1 - pt(Tstat, df = n - 2)

We get T}, = 2.107, t = 1.647, and p-value 0.018; we reject H,,.

n—2,«
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Confidence interval for the height of the line

ind
Assume €1, ..., &, ~ Normal(0,0?). Then:

P The estimator Bo + 51$ is distributed as

new

~ ~ 1 —7)?
Bo + B12yew ~ Normal (50 + B1T pows T2 [n + W]) )

P “Studentizing” the above gives

BAO + lenew — (60 + lenew)
(z z,)?
4 + neg Ly

~t

n—2°

Tx

P Soa (1 —«a)100% confidence interval for 3, + (3,

new

) A ~ 1 (xnew B '%n)z
Bo + B1%yew £ tn2,a/20\/n T

xrx
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Hemoglobin versus RBC count example (cont)

Give a 95% Cl for the mean hemoglobin level of individuals with RBC
count 5.5.

alpha <- 0.05

xnew <- 5.5

xnew_se <- sqrt(sgsghat)*sqrt(1/n+(xnew-xbar) ~2/Sxx)
ta2 <- gqt(l-alpha/2,n-2)

lo <- bOhat + blhat * xnew - ta2 * xnew_se

up <- bOhat + blhat * xnew + ta2 * xnew_se

We are 95% confident that the mean hemoglobin level of individuals with
RBC count 5.5 lies in the interval (14.767,15.011).
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Prediction interval for a new value of the response

ind
Assume &4, ... ,&,, ~ Normal(0,0?). Then:

P The new residual Y, .., — 3, + 3%, is distributed as

new

~ ~ 1 —7.)2
Y ew — Bo + B1% ey ~ Normal (O, o? [1 +—+ M]) .
n Sy

P “Studentizing” the above gives

Ynew — 60 + /lenew
51+ 1+ g

n—2-

P Soa (1 —«a)100% prediction interval interval for Y, is

new

) ) ~ 1 (xnew - )2
Bo + Brtnen tn_z,a/zo\/ 14 g o Tn)
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Hemoglobin versus RBC count example (cont)

Give a 95% prediction interval for the hemoglobin level when the RBC
count is 5.5.

alpha <- 0.05

xnew <- 5.5

xnew_pse <- sqrt(sgsghat)*sqrt(1+1/n+(xnew-xbar) "2/Sxx)
ta2 <- gqt(l-alpha/2,n-2)

lo <- bOhat + blhat * xnew - ta2 * xnew_pse

up <- bOhat + blhat * xnew + ta2 * xnew_pse

We are 95% confident that an individual with RBC count 5.5 will have a
hemoglobin level in the interval (13.331,16.447).

18/63



Plot confidence and prediction limits over the range of RBC counts.

alpha <- 0.05
ta2 <- gqt(1-alpha/2,n-2)
xseq <- seq(min(x),max(x),length = 500)

xseq_se <- sqrt(sgsghat)*sqrt(1/n+(xseq-xbar) ~2/Sxx)
loci <- bOhat + blhat * xseq - ta2 * xseq_se
upci <- bOhat + blhat * xseq + ta2 * xseq_se

xseq_pse <- sqrt(sgsghat)*sqrt(1+1/n+(xseq-xbar) "2/Sxx)
lopi <- bOhat + blhat * xseq - ta2 * xseq_pse
uppi <- bOhat + blhat * xseq + ta2 * xseq_pse
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plot(Y~x)

abline(bOhat,blhat)

lines(loci ~ xseq, 1lty=2); lines(upci ~ xseq, lty=2)
lines(lopi ~ xseq, 1lty=3); lines(uppi ~ xseq, 1lty=3)

4.0 4.5 5.0 55 6.0 6.5
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The predict () function in R

Can obtain Cl for 8y + 3%, and Pl for Y, with predict () function.
Im_out <- 1m(Y~x)

xnew <- 5.5

predict(lm_out, newdata = data.frame(x = xnew), int = "conf")

fit lwr upr
1 14.88892 14.76725 15.01059

predict(lm_out, newdata = data.frame(x = xnew), int = "pred")

fit lwr upr
1 14.88892 13.33117 16.44667
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Sums of squares in simple linear regression

We decompose the variation in Y7, ..., Y, by defining the:

P Total sum of squares: SSp,, = > (V; —Y,)?
P Regression sum of squares: SSg,, = 27:1()7; —Y,)?
P Error sum of squares: SSg,,, = Z:‘:l (Y, —Y;)?

We have SSt,; = SSgeg + SSgrror-

- . . . . . 2 SSReg
The coefficient of determination is defined as R* = ———.
SSTot
> R?e0,1]
P> Proportion of variation in Y “explained” by the covariate x.

. . . 2 _ 2
P In simple linear regression we have R* = r2,.
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The mean squares in simple linear regression

The SS, appropriately scaled, follow chi-square distributions:

St

> 01; b~ X%—1(¢Total)
SSRe

> 0_2 2~ X%(queg)
SSError

> T 72’1,72

The quantities ¢, and ¢g,, are called noncentrality parameters.

Dividing SSg,, and SSg,,,, by their dfs, we define:

5S
P> Regression mean square: MSge, = %
_ SSError

P Error mean square: MSgror =

n—2
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The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source Df SS MS F value p-value
Regression 1 SSReg MSgee  Flest P(F > Fi o)
Error n—2 SSError Error

Total n—1 SSq.,

This is an example of an ANOVA table.
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Overall F test

In addition to the SS, df, and MS value, the ANOVA table presents

> Ftest =
P P(F > F,.), where this is computed under F' ~ F ,, ,

These are the test statistic and p-value of the overall F test.

In simple linear regression this p-value is the same as the one for testing

Hy: B, = 0 versus Hy: f3; # 0 with the t test; moreover Fy = T2

(n

— 9)p2
=2y i SR,

For what it's worth, one can show F} ., =
es 1 _ riy

We will discuss the overall F test in greater detail later.
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Building the ANOVA table

SST <- sum((Y - Ybar) ~2)

SSR <- sum((Yhat - Ybar) ~2)

SSE <- sum((Y - Yhat)~2)

MSR <- SSR / 1

MSE <- SSE / (n-2)

Fstat <- MSR / MSE # same as (n-2)*rxY"2/(1 - rxY"2)
pval <- 1 - pf(Fstat,1,n-2)

Source Df SS MS F value p-value

X 1 491.37 49137 78515 O
Error 760 475.63 0.63
Total 761 967
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The Im(), summary (), and anova() functions in R

1m_out <- 1m(Y~x)
1m_out

Call:
Im(formula = Y ~ x)

Coefficients:

(Intercept) x
2.994 2.163
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summary (1m_out)

Call:
Im(formula = Y ~ x)

Residuals:
Min 1Q Median 3Q Max
-5.9702 -0.4232 0.0074 0.4645 2.3791

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.99447 0.37065 8.079 2.56e-15 ***
X 2.16263 0.07718 28.021 < 2e-16 *x**

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7911 on 760 degrees of freedom

Multiple R-squared: 0.5081, Adjusted R-squared: 0.5075
F-statistic: 785.1 on 1 and 760 DF, p-value: < 2.2e-16
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anova(1lm_out)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr (>F)
X 1 491.37 491.37 785.15 < 2.2e-16 **x*
Residuals 760 475.63 0.63

Signif. codes: O '**x' 0.001 '*x' 0.01 'x' 0.05 '

.1 0.1

1
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Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

1. The responses are normally distributed around the regression line
(Check QQ plot of residuals). If n is large this doesn’t matter.

2. The response has the same variance for all values of the covariate
(Check residuals vs fitted values plot).

3. The covariate and the response are linearly related (Check residuals
vs fitted values plot).

4. The response values are independent of each other (No way to
check; must trust experimental design).
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Generating diagnostic plots from 1m() with plot ()

plot (Im_out,which = 2)

Standardized residuals

-6 -4 -2

-8

Q-Q Residuals

I I I I I
-3 -2 -1 0 1

Theoretical Quantiles
Im(Y ~ x)
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plot(1m_out,which = 1)

Residuals vs Fitted

Residuals
-2

-4

0682
© 2370

I I I I I I I
11 12 13 14 15 16 17

Fitted values
Im(Y ~ x)
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The abalone...

ai/Red sy Unagiﬂ

(Sweet Shrimp

Photo on the left by Sharktopus - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=14082271
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Abalone data example

Predict shucked weight of an abalone by its length.

csv <- url("https://people.stat.sc.edu/gregorkb/data/abalone.csv")

abalone <- read.csv(csv,col.names = c("Sex",
"Length",
"Diameter",
"Height",
"Whole_Wt",
"Shucked_Wt",
"Viscera_Wt",
"Shell _Wt",
"Rings"))

Y <- abalone$Shucked_Wt

x <- abalone$Length

n <- length(Y)

There are n = 4176 records. Data come from Nash and Ford (1995).
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Iml <- Im(Y~x)

plot (Y~x)

abline(1m1)
o
—
e
-

>
v _
o
S
o
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Try transforming x:

x3 <- x**3
1m2 <- Im(Y ~ x3)
plot(Y ~ x3); abline(1m2)

n
R
(@]
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o
ri 1 & © o [e)
> o9
n & o
o | Oo o
®
(@]
o _|
© T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

x3
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plot (1m2,which = 1)

Residuals vs Fitted

00 02 04 0.6

Residuals

-0.4
|

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fitted values
Im(Y ~ x3)
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Could transform both Y and x:

logY <- log(Y); logx <- log(x)
1m3 <- Im(logY ~ logx)
plot(logY~logx); abline(1m3)

logY

-2.5 -2.0 -1.5 -1.0 -0.5

logx
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plot (1m3,which = 2)

Standardized residuals

15

10

Q-Q Residuals
12100
26270
12160
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-2 0 2

Theoretical Quantiles
Im(logY ~ logx)
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plot (1m3,which = 1)

Residuals vs Fitted
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Fitted values
Im(logY ~ logx)
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Transforming variables to obtain a linear relationship

Take care how to interpret 3; after transforming the data.

Example: Log transforming x and Y gives 3, a %-change interpretation:

dl 1 d d
ol - = ==

dx x Y x

logy = By + B logz =
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Abalone data example (cont)

We must back-transform prediction intervals if we have transformed Y.

xnew <- 0.5

newdata <- data.frame( logx = log(xnew))

pi_logY <- predict(lm3,newdata = newdata, int = "pred")
pi_logY

fit lwr upr
1 -1.335636 -1.724831 -0.946441

pi <- exp(pi_logY)
pi

fit lwr upr
1 0.2629909 0.1782032 0.3881199
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plot(Y~x,col="gray"); logx <- seq(min(logx),max(logx) ,length=500)
newdata <- data.frame(logx = logx)

logy_hat <- predict(lm3,newdata = newdata,int = "pred")
lines(exp(logy_hat[,1]) ~ exp(logx), col = "red")
lines(exp(logy_hat[,2]) ~ exp(logx), col = "red", 1lty = 3,lwd=1.5)
lines(exp(logy_hat[,3]) ~ exp(logx), col = "red", lty = 3,lwd=1.5)

0
—

1.0

0.2 0.4 0.6 0.8
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Qutliers in simple linear regression

Outlying data points can have a large influence on the estimated
regression function.

Let’s generate some data and then add an outlier:

n <- 20

b0 <- 1

b1 <= =1/
sg <- .2

x0 <- runif(n,0,5)

e <- rnorm(n,0,sg)

YO <- b0 + bl *x x0 + e
x <- c(x0,.3)

W< =NCIGYOR=1%3))
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plot(Y~x);points(Y[n+1]~x[n+1], col = "red")
abline(1m(Y0~x0))
abline(Im(Y~x), col = "red")

-05 0.0

-1.0

-1.5

The red data point appears to exert an undue influence over the fit.
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Leverage

The leverage of a point (z;,Y;) among (z,Y7), ..., (z,,Y,,) is

1 i
lev, = — +
n

Leverage only shows outlying-ness in the x direction.
Least-squares line must pass through the point (z,,,Y).

Greater leverage means greater influence on the least-squares line.
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Cook's distance

Cook’s Distance measures how much each data point changes the fit:
1 K o
D=5z Zl(yj — V)% fori=1,..,n,
=

where f/j(i) is the jth fitted value from the model fitted without obs i.

Can also write D i lev; fori =1

n wri ;= ——— fori=1,...,n.
b262 (1 —lev;)? Y
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Make a plot of the Cook's distances

plot (Im(Y~x) ,which = 4)

Cook's distance

Cook's distance

15

21

I
10

Obs. number
Im(Y ~ x)

15

20
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Code to compute Cook’s distances

n <- length(Y)

xbar <- mean(x)

Ybar <- mean(Y)

rxY <- cor(x,Y) # Pearson's correlation coefficient
blhat <- rxY * sd(Y)/sd(x)
bOhat <- Ybar - blhat * xbar
Sxx <- sum((x - xbar)~2)

lev <- 1/n + (x - xbar) ~2/Sxx
Yhat <- bOhat + blhat * x
ehat <- Y - Yhat

sgsghat <- sum(ehat”2)/(n-2)

cooksD <- ehat”™2 / (2*sgsghat) * lev / (1 - lev)~2
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Two-sample t-test by simple linear regression

Let V7, 2 Normal(p,,02), j=1,...,m;, i = 1,2 and consider

Hy: pg—pq =0 versus Hy: pg — pq # 0.
The (equal-variances) two-sample t-test uses the test statistic
,-Y

)
1 1
Spooled \/ nil + niz

where y, = n; ! Z;‘zl Y, i=1,2and

Ttest =

(ny —1)S7 + (ny — 1)53 g — 1 .

S2 et =
pooled ny 4 Ty — 9

We reject H,, at significance level o if [T oo | > ¢, 5 o/
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Appendicitis example

Look again at the data from Marcinkevi¢s et al. (2023).

link <- url("https://people.

data <- read.csv(link)

head

(data)

hem rbc

14
15
11
13
12
12

O WN -

.8 5.27
.7 5.26
.4 3.98
.6 4.64
.6 4.44
.5 4.96

sex
female

male
female
female
female

male

age
12.68
14.10
14.14
16.37
11.08
11.05

no
no
no

no

stat.sc.edu/gregorkb/data/hrbc.csv")

diag
appendicitis
appendicitis
appendicitis
appendicitis
appendicitis
appendicitis

Is the mean hemaglobin level the same in children with and without
appendicitis (ignoring rbc, age, and sex)?
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Appendicitis example (cont)

boxplot(data$hem ~ data$diag)

data$hem

12 14 16

10

o
T
appendicitis no appendicitis

data$diag
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Appendicitis example (cont)

t.test(data$hem ~ data$diag, var.equal = TRUE)

Two Sample t-test

data: data$hem by data$diag
t = -0.49212, df = 760, p-value = 0.6228
alternative hypothesis: true difference in means between group appendicitis and
95 percent confidence interval:
-0.2038964 0.1221585
sample estimates:

mean in group appendicitis mean in group no appendicitis

13.33229 13.37316
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Appendicitis example (cont)

Let the Y} be the hemaglobin values and define an indicator variable as

€Tr. =

K3

{ 0 if no appendicitis . 1,..,n.

1 if appendicitis
Then in the SLR model Y; = 3, + 5, x; + €; we have

> 60 = Mno app
> ﬁO + ﬁl = /’Lapp
> 61 = :U’app — Mo app

The t test in the simple linear regression setup of
Hy: 8, =0versus H;: 8; #0
will give the same p value as the equal-variances two-sample t test of

Hy: flapy = Hno app = 0 versus Hy: oo — i .00 # 0. Cool!
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Exercise: Show that in the above setup we have

Lev, B
Spooled \/ nil + niz U/ v SII

Do it in steps, showing:

2. /3 Yz Y,
3. 0= pooled
4 ]'/ V E:U nl 'n2
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Appendicitis example (cont)

Prepare the data:

Y <- data$hem
x <- as.numeric(data$diag == "appendicitis")
head(cbind(Y,x))

14.
15.
11.
13.
12.
12.

g oo N0
O, O OO X
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summary (Im(Y~x))

Call:
Im(formula = Y ~ x)

Residuals:
Min 1Q Median 3Q Max
-5.1323 -0.7323 -0.0323 0.6677 4.1677

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 13.37316 0.06375 209.782 <2e-16 **x*
b4 -0.04087 0.08305 -0.492 0.623

Signif. codes: O '¥xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.128 on 760 degrees of freedom
Multiple R-squared: 0.0003186, Adjusted R-squared: -0.0009968
F-statistic: 0.2422 on 1 and 760 DF, p-value: 0.6228
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Automatic if we designate the predictor as a “factor” (but watch sign!).

x <- as.factor(data$diag)
summary (1lm(data$hem ~ x))

Call:
Im(formula = data$hem ~ x)

Residuals:
Min 1Q Median 3Q Max
-5.1323 -0.7323 -0.0323 0.6677 4.1677

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 13.33229 0.05322 250.490 <2e-16 **x
xno appendicitis 0.04087 0.08305 0.492 0.623

Signif. codes: O 'xxkx' 0.001 '*x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.128 on 760 degrees of freedom
Multiple R-squared: 0.0003186, Adjusted R-squared: -0.0009968
F-statistic: 0.2422 on 1 and 760 DF, p-value: 0.6228
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The importance (or unimportance) of Normal error terms

Generate some data with a right-skewed error term distribution:

b0 <- 0;bl <- 1;n <- 500;x <- rnorm(n); e <- rgamma(n,shape = 3/2, scale = 2/3) - 1
Y <- bO + bl*x + e
plot(Y~x);1lm_out <- Im(Y~x);abline(lm_out,col = "red")
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Check the Normal quantile-quantile plot of the residuals.

plot(1m_out,which = 2)

Q-Q Residuals

1 2 3 4 5
| |

Standardized residuals

-1 0

Theoretical Quantiles
Im(Y ~ x)
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Generate a large number of such data sets and obtain ,31 for each one.

S <- 300
blhat <- numeric(8)

for(s in 1:8){

X <- rnorm(n)

e <- rgamma(n,shape = 3/2, scale = 2/3) - 1
Y <- b0 + bl*x + e

1m_out <- 1m(Y~x)

bilhat [s] <- coef(1lm_out) [2]
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Check if the BAl values have a Normal distribution.

qqnorm(scale(blhat))
abline(0,1)

Normal Q—-Q Plot

Sample Quantiles

Theoretical Quantiles
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