
STAT 516 Lec 02
Review of simple linear regression

Karl Gregory

2026-01-21

1 / 62

 



Hemoglobin versus RBC count example

These data are a subset of the dataset Marcinkevičs et al. (2023)
Some outliers and missing values were removed.

link <- url("https://gregorkb.github.io/data/hrbc.csv")
data <- read.csv(link)
head(data)

hem rbc sex age diag
1 14.8 5.27 female 12.68 appendicitis
2 15.7 5.26 male 14.10 no appendicitis
3 11.4 3.98 female 14.14 no appendicitis
4 13.6 4.64 female 16.37 no appendicitis
5 12.6 4.44 female 11.08 appendicitis
6 12.5 4.96 male 11.05 no appendicitis
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Hemoglobin level vs red blood cell count for 𝑛 = 762 children.

plot(data$hem ~ data$rbc,
ylab = "Hemoglobin",
xlab = "RBC count")
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Simple linear regression

For (𝑥1, 𝑌1), … , (𝑥𝑛, 𝑌𝑛), the simple linear regression model is𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, 𝑖 = 1, … , 𝑛
where▶ 𝑥1, … , 𝑥𝑛 are the covariate or predictor values.▶ 𝑌1, … , 𝑌𝑛 are the response values.▶ 𝛽0 and 𝛽1 are the intercept and slope parameters, respectively.▶ 𝜀1, … , 𝜀𝑛 are independent Normal(0, 𝜎2) error terms.▶ 𝜎2 is the error term variance.
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Goals in simple linear regression

We will learn how to:

1. Estimate the intercept and slope parameters 𝛽0 and 𝛽1.
2. Estimate the error term variance 𝜎2.
3. Perform inference on 𝛽1.
4. Build a confidence interval for 𝛽0 + 𝛽1𝑥new at any 𝑥new.
5. Build a prediction interval for 𝑌 at any 𝑥new.
6. Decompose the variation in 𝑌 into sums of squares.
7. Check whether the model assumptions are satisfied.
8. Identify outliers and understand their effects.
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Least-squares estimation of slope and intercept

The squared error criterion given by the sum𝑄(𝑏0, 𝑏1) = 𝑛∑𝑖=1(𝑌𝑖 − (𝑏0 + 𝑏1𝑥𝑖))2
of squared vertical distances of 𝑌𝑖 from the line 𝑦 = 𝑏0 + 𝑏1𝑥.

We find 𝑄(𝑏0, 𝑏1) is minimized at (𝑏0, 𝑏1) = ( ̂𝛽0, ̂𝛽1), where▶ ̂𝛽0 = ̄𝑌𝑛 − ̂𝛽1 ̄𝑥𝑛▶ ̂𝛽1 = ∑𝑛𝑖=1(𝑥𝑖 − ̄𝑥𝑛)(𝑌𝑖 − ̄𝑌𝑛)∑𝑛𝑖=1(𝑥𝑖 − ̄𝑥𝑛)2
provided ∑𝑛𝑖=1(𝑥𝑖 − ̄𝑥𝑛)2 > 0.

The least-squares line or fitted line is the line 𝑦 = ̂𝛽0 + ̂𝛽1𝑥.
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Pearson’s correlation coefficient

Given (𝑥1, 𝑌𝑛), … , (𝑥𝑛, 𝑌𝑛), the quantity𝑟𝑥𝑌 = ∑𝑛𝑖=1(𝑥𝑖 − ̄𝑥𝑛)(𝑌𝑖 − ̄𝑌𝑛)√∑𝑛𝑖=1(𝑥𝑖 − ̄𝑥𝑛)2 ∑𝑛𝑖=1(𝑌𝑖 − ̄𝑌𝑛)2
is called Pearson’s correlation coefficient.▶ Describes strength and direction of linear relationships.▶ Must satisfy 𝑟𝑥𝑌 ∈ [−1, 1].▶ Values close to zero indicate a weak linear relationship.▶ Is related to ̂𝛽1 by ̂𝛽1 = 𝑟𝑥𝑌 𝑆𝑌𝑆𝑥 .

where 𝑆𝑌 and 𝑆𝑥 are the sample std devs of the 𝑌 and 𝑥 values.
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Hemoglobin versus RBC count example (cont)

Find the least-squares line on the hemoglobin data.

Y <- data$hem
x <- data$rbc
n <- length(Y)
xbar <- mean(x)
Ybar <- mean(Y)

rxY <- cor(x,Y) # Pearson's correlation coefficient
b1hat <- rxY * sd(Y)/sd(x)
b0hat <- Ybar - b1hat * xbar
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plot(data$hem ~ data$rbc, ylab = "Hemoglobin", xlab = "RBC count")
abline(b0hat,b1hat)
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Estimating the error term variance

After obtaining ̂𝛽0 and ̂𝛽1, define the▶ fitted values as ̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖▶ residuals as ̂𝜀𝑖 = 𝑌𝑖 − ̂𝑌𝑖
for 𝑖 = 1, … , 𝑛.
Then an unbiased estimator of 𝜎2 is given by𝜎̂2 = 1𝑛 − 2 𝑛∑𝑖=1 ̂𝜀2𝑖 .
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Confidence interval for the slope parameter
Assume 𝜀1, … , 𝜀𝑛 ind∼ Normal(0, 𝜎2) and set 𝑆𝑥𝑥 = ∑𝑛𝑖=1(𝑥𝑖 − ̄𝑥𝑛)2.▶ The slope estimator ̂𝛽1 is distributed aŝ𝛽1 ∼ Normal(𝛽1, 𝜎2/𝑆𝑥𝑥).▶ “Studentizing” the above giveŝ𝛽1 − 𝛽1𝜎̂/√𝑆𝑥𝑥 ∼ 𝑡𝑛−2.▶ So a (1 − 𝛼)100% confidence interval for 𝛽1 iŝ𝛽1 ± 𝑡𝑛−2,𝛼/2𝜎̂/√𝑆𝑥𝑥.▶ We often write ŝ.e.( ̂𝛽1) = 𝜎̂/√𝑆𝑥𝑥, s.e. for standard error.

Exercise: Justify the CI using the sampling distribution result.
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Hemoglobin versus RBC count example (cont)

Obtain an estimate of the error term variance.

Yhat <- b0hat + b1hat * x
ehat <- Y - Yhat
sgsqhat <- sum(ehat^2)/(n-2)

We obtain 𝜎̂2 = 0.626.
Now construct a 95% confidence interval for 𝛽1.

alpha <- 0.05
Sxx <- sum((x - xbar)^2)
ta2 <- qt(1 - alpha/2, df = n - 2)
lo <- b1hat - ta2 * sqrt(sgsqhat / Sxx)
up <- b1hat + ta2 * sqrt(sgsqhat / Sxx)

The 95% CI is (2.011, 2.314).
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Tests of hypotheses about the slope
We most often test hypotheses about 𝛽1 of the form𝐻0: 𝛽1 ≥ 0 or 𝐻0: 𝛽1 = 0 or 𝐻0: 𝛽1 ≤ 0𝐻1: 𝛽1 < 0 𝐻1: 𝛽1 ≠ 0 𝐻1: 𝛽1 > 0.
Reject or fail to reject 𝐻0 based on the value of the test statistic𝑇stat = ̂𝛽1𝜎̂/√𝑆𝑥𝑥 .
Rejection rules for the above at significance level 𝛼 are𝑇stat < −𝑡𝑛−2,𝛼 or |𝑇stat| > 𝑡𝑛−2,𝛼/2 or 𝑇stat > 𝑡𝑛−2,𝛼.
The corresponding p-values are, with 𝑇 ∼ 𝑡𝑛−2, the probabilities𝑃(𝑇 < 𝑇stat) or 2 × 𝑃(𝑇 > |𝑇stat|) or 𝑃(𝑇 > 𝑇stat).
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Hemoglobin versus RBC count example (cont)

Test the hypotheses 𝐻0: 𝛽1 = 0 vs 𝐻1: 𝛽1 ≠ 0 at 𝛼 = 0.05.

alpha <- 0.05
Tstat <- b1hat / sqrt(sgsqhat/Sxx)
crit <- qt(1-alpha/2, df = n - 2)
pval <- 2*(1 - pt(abs(Tstat), df = n - 2))

We get 𝑇stat = 28.021, 𝑡𝑛−2,𝛼/2 = 1.963, and 𝑝-value 0; we reject 𝐻0.
Test the hypotheses 𝐻0: 𝛽1 ≤ 2 vs 𝐻1: 𝛽1 > 2.

Tstat <- (b1hat - 2) / sqrt(sgsqhat/Sxx)
crit <- qt(1-alpha, df = n - 2)
pval <- 1 - pt(Tstat, df = n - 2)

We get 𝑇stat = 2.107, 𝑡𝑛−2,𝛼 = 1.647, and 𝑝-value 0.018; we reject 𝐻0.
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Confidence interval for the height of the line
Assume 𝜀1, … , 𝜀𝑛 ind∼ Normal(0, 𝜎2). Then:▶ The estimator ̂𝛽0 + ̂𝛽1𝑥new is distributed aŝ𝛽0 + ̂𝛽1𝑥new ∼ Normal (𝛽0 + 𝛽1𝑥new, 𝜎2 [ 1𝑛 + (𝑥new − ̄𝑥𝑛)2𝑆𝑥𝑥 ]) .▶ “Studentizing” the above giveŝ𝛽0 + ̂𝛽1𝑥new − (𝛽0 + 𝛽1𝑥new)𝜎̂√ 1𝑛 + (𝑥new−𝑥̄𝑛)2𝑆𝑥𝑥

∼ 𝑡𝑛−2.
▶ So a (1 − 𝛼)100% confidence interval for 𝛽0 + 𝛽1𝑥new iŝ𝛽0 + ̂𝛽1𝑥new ± 𝑡𝑛−2,𝛼/2𝜎̂√ 1𝑛 + (𝑥new − ̄𝑥𝑛)2𝑆𝑥𝑥 .
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Hemoglobin versus RBC count example (cont)

Give a 95% CI for the mean hemoglobin level of individuals with RBC
count 5.5.

alpha <- 0.05
xnew <- 5.5
xnew_se <- sqrt(sgsqhat)*sqrt(1/n+(xnew-xbar)^2/Sxx)
ta2 <- qt(1-alpha/2,n-2)
lo <- b0hat + b1hat * xnew - ta2 * xnew_se
up <- b0hat + b1hat * xnew + ta2 * xnew_se

We are 95% confident that the mean hemoglobin level of individuals with
RBC count 5.5 lies in the interval (14.767, 15.011).
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Prediction interval for a new value of the response
Assume 𝜀1, … , 𝜀𝑛 ind∼ Normal(0, 𝜎2). Then:▶ The new residual 𝑌new − ̂𝛽0 + ̂𝛽1𝑥new is distributed as𝑌new − ̂𝛽0 + ̂𝛽1𝑥new ∼ Normal (0, 𝜎2 [1 + 1𝑛 + (𝑥new − ̄𝑥𝑛)2𝑆𝑥𝑥 ]) .▶ “Studentizing” the above gives𝑌new − ̂𝛽0 + ̂𝛽1𝑥new𝜎̂√1 + 1𝑛 + (𝑥new−𝑥̄𝑛)2𝑆𝑥𝑥

∼ 𝑡𝑛−2.
▶ So a (1 − 𝛼)100% prediction interval interval for 𝑌new iŝ𝛽0 + ̂𝛽1𝑥new ± 𝑡𝑛−2,𝛼/2𝜎̂√1 + 1𝑛 + (𝑥new − ̄𝑥𝑛)2𝑆𝑥𝑥 .
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Hemoglobin versus RBC count example (cont)

Give a 95% prediction interval for the hemoglobin level when the RBC
count is 5.5.

alpha <- 0.05
xnew <- 5.5
xnew_pse <- sqrt(sgsqhat)*sqrt(1+1/n+(xnew-xbar)^2/Sxx)
ta2 <- qt(1-alpha/2,n-2)
lo <- b0hat + b1hat * xnew - ta2 * xnew_pse
up <- b0hat + b1hat * xnew + ta2 * xnew_pse

We are 95% confident that an individual with RBC count 5.5 will have a
hemoglobin level in the interval (13.331, 16.447).

18 / 62



Plot confidence and prediction limits over the range of RBC counts.

alpha <- 0.05
ta2 <- qt(1-alpha/2,n-2)
xseq <- seq(min(x),max(x),length = 500)

xseq_se <- sqrt(sgsqhat)*sqrt(1/n+(xseq-xbar)^2/Sxx)
loci <- b0hat + b1hat * xseq - ta2 * xseq_se
upci <- b0hat + b1hat * xseq + ta2 * xseq_se

xseq_pse <- sqrt(sgsqhat)*sqrt(1+1/n+(xseq-xbar)^2/Sxx)
lopi <- b0hat + b1hat * xseq - ta2 * xseq_pse
uppi <- b0hat + b1hat * xseq + ta2 * xseq_pse
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plot(Y~x)
abline(b0hat,b1hat)
lines(loci ~ xseq, lty=2); lines(upci ~ xseq, lty=2)
lines(lopi ~ xseq, lty=3); lines(uppi ~ xseq, lty=3)
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The predict() function in R

Can obtain CI for 𝛽0 + 𝛽1𝑥new and PI for 𝑌new with predict() function.

lm_out <- lm(Y~x)
xnew <- 5.5
predict(lm_out, newdata = data.frame(x = xnew), int = "conf")

fit lwr upr
1 14.88892 14.76725 15.01059

predict(lm_out, newdata = data.frame(x = xnew), int = "pred")

fit lwr upr
1 14.88892 13.33117 16.44667
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Sums of squares in simple linear regression

We decompose the variation in 𝑌1, … , 𝑌𝑛 by defining the:▶ Total sum of squares: SSTot = ∑𝑛𝑖=1(𝑌𝑖 − ̄𝑌𝑛)2▶ Regression sum of squares: SSReg = ∑𝑛𝑖=1( ̂𝑌𝑖 − ̄𝑌𝑛)2▶ Error sum of squares: SSError = ∑𝑛𝑖=1(𝑌𝑖 − ̂𝑌𝑖)2
We have SSTot = SSReg + SSError.

The coefficient of determination is defined as 𝑅2 = SSReg
SSTot

.▶ 𝑅2 ∈ [0, 1]▶ Proportion of variation in 𝑌 “explained” by the covariate 𝑥.▶ In simple linear regression we have 𝑅2 = 𝑟2𝑥𝑌 .
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The mean squares in simple linear regression

The SS, appropriately scaled, follow chi-square distributions:▶ SSTot𝜎2 ∼ 𝜒2𝑛−1(𝜙Total)▶ SSReg𝜎2 ∼ 𝜒21(𝜙Reg)▶ SSError𝜎2 ∼ 𝜒2𝑛−2
The quantities 𝜙Tot and 𝜙Reg are called noncentrality parameters.
Dividing SSReg and SSError by their dfs, we define:▶ Regression mean square: MSReg = SSReg1▶ Error mean square: MSError = SSError𝑛 − 2
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The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source Df SS MS F value p-value
Regression 1 SSReg MSReg 𝐹stat 𝑃(𝐹 > 𝐹stat)
Error 𝑛 − 2 SSError MSError
Total 𝑛 − 1 SSTot

This is an example of an ANOVA table.
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Overall F test

In addition to the SS, df, and MS value, the ANOVA table presents▶ 𝐹stat = MSReg
MSError▶ 𝑃(𝐹 > 𝐹stat), where this is computed under 𝐹 ∼ 𝐹1,𝑛−2

These are the test statistic and p-value of the overall F test.
In simple linear regression this p-value is the same as the one for testing𝐻0: 𝛽1 = 0 versus 𝐻1: 𝛽1 ≠ 0 with the t test; moreover 𝐹stat = 𝑇 2

stat.

For what it’s worth, one can show 𝐹stat = (𝑛 − 2)𝑟2𝑥𝑌1 − 𝑟2𝑥𝑌 in SLR.

We will discuss the overall F test in greater detail later.
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Building the ANOVA table

SST <- sum((Y - Ybar)^2)
SSR <- sum((Yhat - Ybar)^2)
SSE <- sum((Y - Yhat)^2)
MSR <- SSR / 1
MSE <- SSE / (n-2)
Fstat <- MSR / MSE # same as (n-2)*rxY^2/(1 - rxY^2)
pval <- 1 - pf(Fstat,1,n-2)

Source Df SS MS F value p-value
x 1 491.37 491.37 785.15 0
Error 760 475.63 0.63
Total 761 967
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The lm(), summary(), and anova() functions in R

lm_out <- lm(Y~x)
lm_out

Call:
lm(formula = Y ~ x)

Coefficients:
(Intercept) x

2.994 2.163
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summary(lm_out)

Call:
lm(formula = Y ~ x)

Residuals:
Min 1Q Median 3Q Max

-5.9702 -0.4232 0.0074 0.4645 2.3791

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.99447 0.37065 8.079 2.56e-15 ***
x 2.16263 0.07718 28.021 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7911 on 760 degrees of freedom
Multiple R-squared: 0.5081, Adjusted R-squared: 0.5075
F-statistic: 785.1 on 1 and 760 DF, p-value: < 2.2e-16

28 / 62



anova(lm_out)

Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

x 1 491.37 491.37 785.15 < 2.2e-16 ***
Residuals 760 475.63 0.63
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

1. The responses are normally distributed around the regression line
(Check QQ plot of residuals). If 𝑛 is large this doesn’t matter.

2. The response has the same variance for all values of the covariate
(Check residuals vs fitted values plot).

3. The covariate and the response are linearly related (Check residuals
vs fitted values plot).

4. The response values are independent of each other (No way to
check; must trust experimental design).
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Generating diagnostic plots from lm() with plot()
plot(lm_out,which = 2)
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plot(lm_out,which = 1)
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The abalone…

Photo on the left by Sharktopus - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=14082271
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Abalone data example

Predict shucked weight of an abalone by its length.

csv <- url("https://people.stat.sc.edu/gregorkb/data/abalone.csv")
abalone <- read.csv(csv,col.names = c("Sex",

"Length",
"Diameter",
"Height",
"Whole_Wt",
"Shucked_Wt",
"Viscera_Wt",
"Shell_Wt",
"Rings"))

Y <- abalone$Shucked_Wt
x <- abalone$Length
n <- length(Y)

There are 𝑛 = 4176 records. Data come from Nash and Ford (1995).
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lm1 <- lm(Y~x)
plot(Y~x)
abline(lm1)
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Try transforming x:

x3 <- x**3
lm2 <- lm(Y ~ x3)
plot(Y ~ x3); abline(lm2)
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plot(lm2,which = 1)
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Could transform both Y and x:

logY <- log(Y); logx <- log(x)
lm3 <- lm(logY ~ logx)
plot(logY~logx); abline(lm3)
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plot(lm3,which = 2)
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plot(lm3,which = 1)
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Transforming variables to obtain a linear relationship

Take care how to interpret 𝛽1 after transforming the data.
Example: Log transforming 𝑥 and 𝑌 gives 𝛽1 a %-change interpretation:

log 𝑦 = 𝛽0 + 𝛽1 log 𝑥 ⟺ 𝑑 log 𝑦𝑑𝑥 = 𝛽1 1𝑥 ⟺ 𝑑𝑦𝑦 = 𝛽1 𝑑𝑥𝑥
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Abalone data example (cont)

We must back-transform prediction intervals if we have transformed 𝑌 .

xnew <- 0.5
newdata <- data.frame( logx = log(xnew))
pi_logY <- predict(lm3,newdata = newdata, int = "pred")
pi_logY

fit lwr upr
1 -1.335636 -1.724831 -0.946441

pi <- exp(pi_logY)
pi

fit lwr upr
1 0.2629909 0.1782032 0.3881199
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plot(Y~x,col="gray"); logx <- seq(min(logx),max(logx),length=500)
newdata <- data.frame(logx = logx)
logy_hat <- predict(lm3,newdata = newdata,int = "pred")
lines(exp(logy_hat[,1]) ~ exp(logx), col = "red")
lines(exp(logy_hat[,2]) ~ exp(logx), col = "red", lty = 3,lwd=1.5)
lines(exp(logy_hat[,3]) ~ exp(logx), col = "red", lty = 3,lwd=1.5)
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Outliers in simple linear regression

Outlying data points can have a large influence on the estimated
regression function.
Let’s generate some data and then add an outlier:

n <- 20
b0 <- 1
b1 <- -1/2
sg <- .2
x0 <- runif(n,0,5)
e <- rnorm(n,0,sg)
Y0 <- b0 + b1 * x0 + e
x <- c(x0,.3)
Y <- c(Y0,-1.3)
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plot(Y~x);points(Y[n+1]~x[n+1], col = "red")
abline(lm(Y0~x0))
abline(lm(Y~x), col = "red")
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Leverage and Cook’s distance

The leverage of a point (𝑥𝑖, 𝑌𝑖) among (𝑥1, 𝑌1), … , (𝑥𝑛, 𝑌𝑛) is

lev𝑖 = 1𝑛 + (𝑥𝑖 − ̄𝑥𝑛)2𝑆𝑥𝑥
Leverage only shows outlying-ness in the 𝑥 direction.
Cook’s Distance measures how much each data point changes the fit:𝐷𝑖 = 12𝜎̂2 𝑛∑𝑗=1( ̂𝑌𝑗 − ̂𝑌𝑗(𝑖))2 = ̂𝑒2𝑖2𝜎̂2 lev𝑖(1 − lev𝑖)2 for 𝑖 = 1, … , 𝑛,
where ̂𝑌𝑗(𝑖) is the 𝑗th fitted value from the model fitted without obs 𝑖.
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Make a plot of the Cook’s distances
plot(lm(Y~x),which = 4)

5 10 15 20

0.
0

0.
5

1.
0

1.
5

Obs. number

C
oo

k's
 d

is
ta

nc
e

lm(Y ~ x)

Cook's distance
21

12 20

47 / 62



Code to compute Cook’s distances

n <- length(Y)
xbar <- mean(x)
Ybar <- mean(Y)
rxY <- cor(x,Y) # Pearson's correlation coefficient
b1hat <- rxY * sd(Y)/sd(x)
b0hat <- Ybar - b1hat * xbar
Sxx <- sum((x - xbar)^2)
lev <- 1/n + (x - xbar)^2/Sxx
Yhat <- b0hat + b1hat * x
ehat <- Y - Yhat
sgsqhat <- sum(ehat^2)/(n-2)

cooksD <- ehat^2 / (2*sgsqhat) * lev / (1 - lev)^2
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Two-sample t-test by simple linear regression

Let 𝑌𝑖𝑗 ind∼ Normal(𝜇𝑖, 𝜎2), 𝑗 = 1, … , 𝑛𝑖, 𝑖 = 1, 2 and consider𝐻0: 𝜇2 − 𝜇1 = 0 versus 𝐻1: 𝜇2 − 𝜇1 ≠ 0.

The (equal-variances) two-sample t-test uses the test statistic𝑇stat = ̄𝑌2 − ̄𝑌1𝑆pooled√ 1𝑛1 + 1𝑛2 ,
where ̄𝑦𝑖 = 𝑛−1𝑖 ∑𝑛𝑖𝑗=1 𝑌𝑖𝑗, 𝑖 = 1, 2 and

𝑆2
pooled = (𝑛1 − 1)𝑆21 + (𝑛2 − 1)𝑆22𝑛1 + 𝑛2 − 2 , 𝑆𝑖 = 1𝑛𝑖 − 1 𝑛𝑖∑𝑗=1(𝑌𝑖𝑗 − ̄𝑌𝑖)2.

We reject 𝐻0 at significance level 𝛼 if |𝑇stat| > 𝑡𝑛−2,𝛼/2.
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Appendicitis example

Look again at the data from Marcinkevičs et al. (2023).

link <- url("https://people.stat.sc.edu/gregorkb/data/hrbc.csv")
data <- read.csv(link)
head(data)

hem rbc sex age diag
1 14.8 5.27 female 12.68 appendicitis
2 15.7 5.26 male 14.10 no appendicitis
3 11.4 3.98 female 14.14 no appendicitis
4 13.6 4.64 female 16.37 no appendicitis
5 12.6 4.44 female 11.08 appendicitis
6 12.5 4.96 male 11.05 no appendicitis

Is the mean hemaglobin level the same in children with and without
appendicitis (ignoring rbc, age, and sex)?
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Appendicitis example (cont)

boxplot(data$hem ~ data$diag)
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Appendicitis example (cont)

t.test(data$hem ~ data$diag, var.equal = TRUE)

Two Sample t-test

data: data$hem by data$diag
t = -0.49212, df = 760, p-value = 0.6228
alternative hypothesis: true difference in means between group appendicitis and group no appendicitis is not equal to 0
95 percent confidence interval:
-0.2038964 0.1221585

sample estimates:
mean in group appendicitis mean in group no appendicitis

13.33229 13.37316
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Appendicitis example (cont)
Let the 𝑌𝑖 be the hemaglobin values and define an indicator variable as𝑥𝑖 = { 0 if no appendicitis1 if appendicitis for 𝑖 = 1, … , 𝑛.
Then in the SLR model 𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 we have▶ 𝛽0 = 𝜇no app▶ 𝛽0 + 𝛽1 = 𝜇app▶ 𝛽1 = 𝜇app − 𝜇no app

The t test in the simple linear regression setup of𝐻0: 𝛽1 = 0 versus 𝐻1: 𝛽1 ≠ 0
will give the same p value as the equal-variances two-sample t test of𝐻0: 𝜇app − 𝜇no app = 0 versus 𝐻1: 𝜇app − 𝜇no app ≠ 0. Cool!
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Exercise: Show that in the above setup we havē𝑌2 − ̄𝑌1𝑆pooled√ 1𝑛1 + 1𝑛2 = ̂𝛽1𝜎̂/√𝑆𝑥𝑥 .
Do it in steps, showing:

1. ̂𝛽0 = ̄𝑌1
2. ̂𝛽1 = ̄𝑌2 − ̄𝑌1
3. 𝜎̂ = 𝑆pooled

4. 1/√𝑆𝑥𝑥 = √ 1𝑛1 + 1𝑛2
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Appendicitis example (cont)

Prepare the data:

Y <- data$hem
x <- as.numeric(data$diag == "appendicitis")
head(cbind(Y,x))

Y x
[1,] 14.8 1
[2,] 15.7 0
[3,] 11.4 0
[4,] 13.6 0
[5,] 12.6 1
[6,] 12.5 0
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summary(lm(Y~x))

Call:
lm(formula = Y ~ x)

Residuals:
Min 1Q Median 3Q Max

-5.1323 -0.7323 -0.0323 0.6677 4.1677

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.37316 0.06375 209.782 <2e-16 ***
x -0.04087 0.08305 -0.492 0.623
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.128 on 760 degrees of freedom
Multiple R-squared: 0.0003186, Adjusted R-squared: -0.0009968
F-statistic: 0.2422 on 1 and 760 DF, p-value: 0.6228
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Automatic if we designate the predictor as a “factor” (but watch sign!).

x <- as.factor(data$diag)
summary(lm(data$hem ~ x))

Call:
lm(formula = data$hem ~ x)

Residuals:
Min 1Q Median 3Q Max

-5.1323 -0.7323 -0.0323 0.6677 4.1677

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.33229 0.05322 250.490 <2e-16 ***
xno appendicitis 0.04087 0.08305 0.492 0.623
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.128 on 760 degrees of freedom
Multiple R-squared: 0.0003186, Adjusted R-squared: -0.0009968
F-statistic: 0.2422 on 1 and 760 DF, p-value: 0.6228
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The importance (or unimportance) of Normal error terms
Generate some data with a right-skewed error term distribution:
b0 <- 0;b1 <- 1;n <- 500;x <- rnorm(n); e <- rgamma(n,shape = 3/2, scale = 2/3) - 1
Y <- b0 + b1*x + e
plot(Y~x);lm_out <- lm(Y~x);abline(lm_out,col = "red")
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Check the Normal quantile-quantile plot of the residuals.

plot(lm_out,which = 2)
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Generate a large number of such data sets and obtain ̂𝛽1 for each one.

S <- 300
b1hat <- numeric(S)

for(s in 1:S){

x <- rnorm(n)
e <- rgamma(n,shape = 3/2, scale = 2/3) - 1
Y <- b0 + b1*x + e
lm_out <- lm(Y~x)
b1hat[s] <- coef(lm_out)[2]

}
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Check if the ̂𝛽1 values have a Normal distribution.

qqnorm(scale(b1hat))
abline(0,1)
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