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Hemoglobin versus RBC count example

These data are a subset of the dataset Marcinkevics et al. (2023)

Some outliers and missing values were removed.

link <- url("https://gregorkb.github.io/data/hrbc.csv")
data <- read.csv(link)
head(data)

hem rbc sex  age diag
—_—
1 14.8|5.27 [female 12.68 appendicitis
2 15.7|5.26] male 14.10 no appendicitis
3 11.413.98| female 14.14 no appendicitis
4 13.6|4.64 |female 16.37 no appendicitis
5 12.6|4.44 |female 11.08 appendicitis
6 12.5|4.96 | male 11.05 no appendicitis
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4

Hemoglobin level vs red blood cell count for n = 762 children.

plot(data$hem ~ data$rbc,
ylab = "Hemoglobin",
xlab = "RBC count") <t y&{' ) ne
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Simple linear regression

Aa"" W‘o [‘:M"y

For ({,Y7),...,(x,,Y, ), the simple linear regression is

@: Bo + 01, +i =1,...,n

u
- “ \a‘-*‘
where 1 4')\ ercer tern -
\M‘\""” ‘IU‘I{ (L: Py
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» z,,...,x, are the covariate or predictor values. €=
» Y., ....Y are the response values.
1> Yt n P
» 3, and 3, are the intercept and slope parameters, respectively.
» (. ... ¢ aref/independent/Normal(0, c°) lerror terms. +[x
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» o7 is the error term variance. )
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Goals in simple linear regression

We wpl learn how to:

ate the error term varianc

rm inference on [3;.

ild a confidence interval for 3, + 8,7, at any ajnew.j
/' Build a prediction interval for Y at any z .,

—>6. Decompose the variation in Y into sums of squares. ,\

7. Check whether the model assumptions are satisfied.

8. ldentify outliers and understand their effects.
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)Least—squares estimation of slope and intercept

The squared error criterion given by the sum

n

Q(by, by) = Z(Yz — (bg + by;))

1=1

of squared vertical distances of Y, from the line y = b, + b, x.

We find Q(by, by) is minimized at (by,b;) = (B, 3;), where

provided Y. "  (z; — z,,)* > 0.

The least-squares line or fitted line is the line y = 5, + B, x.
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Pearson’s correlation coefficient

Given (z4,Y,),...,(z,,Y ), the quantity

is called Pearson’s correlation coefficient.

P Describes strength and direction of linear relationships.
» Must satisfy ry € [—1, 1].

P Values close to zero indicate a weak linear relationship.
» s related to 3; by
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\/
Hemoglobin versus RBC count example (cont)

Find the least-squares line on the hemoglobin data.

Y <- data$hem
x <- data$rbc
n <- length(Y)
xbar <- mean(x)
Ybar <- mean(Y)

rxY <- cor(x,Y) # Pearson's correlation coefficient

blhat <- rxY * sd(Y)/sd(x)
bOhat <- Ybar - blhat * xbar
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plot(data$hem ~ data$rbc, ylab = "Hemoglobin", xlab = "RBC count")
abline (bOhat,blhat) A A x
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Estimating the error term variance

P residuals as 6 — Y- —

1

fore=1,...,n.

Then an unbiased estimator of o2 is given by

n
~2 1 ~2
o — 9 82-.
S—_ mn — i—1
n o ~
A A
LI = “' z sz - L“)
A | e n-¢ (7 "
d‘; - .Z. Z\ o
=t (-4
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Confidence interval for the slope parameter

ind
Assume €4, ..., &, ~ Normal(0,c?) and set-:q }
1= 1
=

P The slope estimator /31 is distributed as u, desin Variancs
0, 7N (P MX
[51 ~ Normal( 6170 /}J
7S 1
P “Studentizing” the above gives
u izing’ ve giv 5‘?;,‘ | ny
2 alves —é—\
51— b ‘
~ tn—Q' r’.

» Soa (1 —«a)100% confidence interval for 3, is A )
. s.d--“b‘

61 j:tn—Q,oz/2A/ S:I::I:

———

» We often write 5.6.(3,) = 6/+/5,., s.e. for standard error.

Exercise: Justify the Cl using the sampling distribution result.
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Hemoglobin versus RBC count example (cont)

Obtain an estimate of the error term variance.

Yhat <- bOhat + blhat * x
ehat <- Y - Yhat
sgsghat <- sum(ehat~2)/(n-2)

We obtain 62 = 0.626.

Now construct a 95% confidence interval for 3;.

alpha <- 0.05

Sxx <- sum((x - xbar)~2)

ta2 <- qt(1 - alpha/2, df = n - 2)

lo <- blhat - ta2 * sqrt(sgsghat / Sxx)
up <- blhat + ta2 * sqrt(sgsghat / Sxx)

The 95% Cl is (2.011, 2.314). PP (e
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Tests of hypotheses about the slope

We most often test hypotheses about 3, of the form

Hy B, >0| o VHy B :0] or | Hy: 8, <0 (
H: 3, <0 H:pB,#0 H,: B, > 0.

Reject or fail to reject Hy based on the value of the test statistic

t
(— —

w2 T
stat 5’/\/57:” ,

Rejection rules for the above at significance level a are X

Tstat < _tn—2,a or ‘Tstat| > tn—2,oz/2 or Tstat > tn—2,oz'

The corresponding p-values are, with 1" ~ ¢, _,, the probabilities

P<T < Tstat) or 2 X P(T > ‘Tstat‘) or P<T > Tstat)'
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Hemoglobin versus RBC count example (cont)

Test the hypotheses H,: Sy =0 vs Hy: 3, # 0 at a = 0.05.

alpha <- 0.05

Tstat <- blhat / sqrt(sgsqhat/Sxx)

crit <- qt(l-alpha/2, df = n - 2)

pval <- 2%(1 - pt(abs(Tstat), df = n - 2))

We get 1, = 28.021, t,,_5 /o = 1.963, and p-value 0; we reject H,,.
Test the hypotheses Hy: 5; < 2vs Hy: 51 > 2.
Tstat <- (blhat - 2) / sqrt(sgsqhat/Sxx)

crit <- qt(l-alpha, df = n - 2)
pval <- 1 - pt(Tstat, df = n - 2)

We get 1., = 2.107, ¢ = 1.647, and p-value 0.018; we reject H,,.

n—2,x
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Confidence interval for the height of the line

ind
Assume €4, ..., &, ~ Normal(0,c?). Then:

n

P The estimator Bo + le is distributed as

new

" - 1 T oo — Ly )
60 T 51xnew ~ Normal (60 =+ lenewao-2 |:n + ( neWS 'n) :|) .
\/\r - —
P “Studentizing” the above gives lev,,.
BO + lenew B (50 + 51xnew>
~ /1 (T yow —T,, )2 ~ o2
O-\/ﬁ _|_ neg n
» Soa (1 — a)100% confidence interval for 8y + B2, iS

%) ) ~ 1 Lnew — :En 2
50 + lenew + tn2,a/20\/ + ( ) y

n S

rxr
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Hemoglobin versus RBC count example (cont)

Give a 95% CI for the mean hemoglobin level of individuals with RBC
count 5.5.

alpha <- 0.05

xnew <- 5.5

xnew_se <- sqrt(sgsqghat)*sqrt(1/n+(xnew-xbar) "2/Sxx)
ta2 <- qt(l-alpha/2,n-2)

lo <- bOhat + blhat * xnew - ta2 * xnew_se

up <- bOhat + blhat * xnew + ta2 * Xnew_se

We are 95% confident that the mean hemoglobin level of individuals with
RBC count 5.5 lies in the interval (14.767,15.011).
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Prediction interval for a new value of the response

ind

Assume €4, ..., &, ~ Normal(0,c?). Then:

n

» The new residual Y, — BAO + Blmnew is distributed as

new

|~ Normal (’(; o2 [1 +(£ + (xnewsmwn);b |

P “Studentizing” the above gives

Ynew o 60 - 51xnew
— n—2°

a-\/l + % _|_ (ajneg_xn)Q

X

» Soa (1 — «a)l00% prediction interval interval for Y. __ is

new

3 2 ~ 1 €T — T 2
Bo + Prnew jEtn2,oz/2a\/1 T ( neWS n) :

T n TT
SV i )
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Hemoglobin versus RBC count example (cont)

Give a 95% prediction interval for the hemoglobin level when the RBC
count is 5.5.

alpha <- 0.05

xnew <- 5.5

xnew_pse <- sqrt(sgsqghat)*sqrt(1+1/n+(xnew-xbar) 2/Sxx)
ta2 <- qt(l-alpha/2,n-2)

lo <- bOhat + blhat * xnew - ta2 * xnew_pse

up <- bOhat + blhat * xnew + ta2 * xnew_pse

We are 95% confident that an individual with RBC count 5.5 will have a
hemoglobin level in the interval (13.331,16.447).
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Plot confidence and prediction limits over the range of RBC counts.

alpha <- 0.05
ta2 <- gqt(l-alpha/2,n-2)
xseq <- seq(min(x) ,max(x),length = 500)

xseq_se <- sqrt(sgsghat)*sqrt(1/n+(xseq-xbar) "2/Sxx)
loci <- bOhat + blhat * xseq - ta2 * xseq_se
upci <- bOhat + blhat * xseq + ta2 * xseq_se

xseq_pse <- sqrt(sgsqghat)*sqrt(1+1/n+(xseq-xbar) ~"2/Sxx)

lopi <- bOhat + blhat * xseq - ta2 * xseq_pse
uppi <- bOhat + blhat * xseq + ta2 * xseq_pse
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plot(Y~x)

abline (bOhat,blhat)

lines(loci ~ xseq, 1lty=2); lines(upci ~ xseq, 1lty=2)
lines(lopi ~ xseq, 1lty=3); lines(uppi ~ xseq, 1lty=3)

4.0 4.5 5.0 5.5 6.0 6.5
o5
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The predict () function in R

Can obtain Cl for 8, + 8,2, and Pl for Y, with predict () function.

1m_out <- 1m(Y~x)
xnew <- 5.5

predict (lm_out, newdata = data.frame(x = xnew), int = "conf")
fit lwr upr

1 14.88892 14.76725 15.01059

predict (lm_out, newdata = data.frame(x = xnew), int = "pred")

fit lwr upr
1 14.88892 13.33117 16.44667
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Sums of squares in simple linear regression

We decompose the variation in Y, ..., Y, by defining the:

» Total sum of squares:/SSTOt =" (Y, =Y, )j o
P Regression sum of squares: SSp., = Z (Y Y, & A LS

» Error sum of squares: SSg,... = > ?.7': (YZ Yz) Jine § p
~———— L e
We have SSTOt — SSReg —|_ SSEI‘I‘OI"

S—

SSpey  SSTet= SSEen

-
-

The coefficient of determination is defined as R? = : —
R SSTot sg-r;-}

» R2c0,1] = | - 5S€er..
P Proportion of variation in Y “explained” by the covariate . SOres

» In simple linear regression we have R* = r2..

T
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The mean squares in simple linear regression

The SS, appropriately scaled, follow dfir¢quare distributions:

> 2 "~ Xn-2 o

The quantities @,y and ¢g,, are called noncentrality parameters.

Dividing SS5g., and S55g,,,, by their dfs, we define:

SS
P Regression mean square: MSg., = f»eg
SS
» Error mean square: MSg,. . = El“r;r
e n -

MS
ot -
“ MSEmr 23 /62




The Analysis of Variance (ANOVA) table

¢S i " - A~ * .
MSEvar - "E_— - ‘L‘ = C‘l‘ ‘r) n-2

(4

We often present the SS, df, and MS values in a table like this:

Source F value p-value
Regression @ .—> SRe P(F > Fye) )
Error SSError e
Total n—1 SStu
This is an example of an ANOVA table. »F = 2 ——
ta® /A’semv
Q;w‘.L | rone regreSd oo 1)
y
Da: "& i Vs U,: (S‘#O. ‘r.b.,,q—
\/\‘/"‘ A -

n A
£ zt’ = 6.1-
>
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Overall F test

In addition to the SS, df, and MS value, the ANOVA table presents

M5Req

MSError
» P(F > F,.) where this is computed under F' ~ F| ,

> Fstat —

These are the test statistic and p-value of the overall F test.

In simple linear regression this p-value is the same as the one for testing
H,: 8; = 0 versus Hy: 3; # 0 with the t test; moreover ... = T= ..

— )2
=2y i SR

For what it's worth, one can show F . . = 5
1 — Ty

We will discuss the overall F test in greater detail later.
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Building the ANOVA table

SST <- sum((Y - Ybar) 2) L e Ad e
SSR <- sum((Yhat - Ybar)~2) o Y ‘
SSE <~ sum((Y - Yhat)~2) LA &t
MSR <- SSR / 1
MSE <- SSE / (n-2)
Fstat <- MSR / MSE # same ay’ (n-2)*rxY~2/(1 - rxY"2)
pval <- 1 - pf(Fstat,1,n- 5 o A ¢
[ Y /\ \
$Sepn 7 Z [1-T0) 2 57(“" (2D
A Source Df( SS MS F value p-value
\ i\
. X 1 491.37 491.37 785.15 O
ne Error \)760‘ 475.63 0.63 99/-3%
—
Total 761 967 = .c3
T wn ( - =
n-1 = Z .- 9.
nNe %L g%‘*q ¢z
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The 1m(), summary(), and anova() functions in R

1m_out <- 1m(Y~x)
1Im_out

Call:
Im(formula = Y ~ x)

Coefficients:

(Intercept) X
2.994 2.163
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summary (lm_out)

Call:
Im(formula = Y ~ x)

Residuals:
Min 1Q Median 3Q Max
-5.9702 -0.4232 0.0074 0.4645 2.3791

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.99447 0.37065 8.079 2.56e-15 *xx*
X 2.16263 0.07718 28.021 < 2e-16 x*x*x

Signif. codes: O 'x*x*x' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

Residual standard error: 0.7911 on 760 degrees of freedom
Multiple R-squared: 0.5081, Adjusted R-squared: 0.5075
F-statistic: 785.1 on 1 and 760 DF, p-value: < 2.2e-16
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anova(lm_out)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr (>F)
X 1 491.37 491.37 785.15 < 2.2e-16 **x*
Residuals 760 475.63 0.63

Signif. codes: O 'x*x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Checking model assumptions R

i . +— c.‘ £; PN NLD;W\
\{-, r;o‘l" Pc ¢

\

? {—’(; ey

Validity of the foregoing analyses depends on these assumptions:

\.i 1. The responses are normally distributed around the regression line
) (Check QQ plot of residuals). If n is large this doesn’t matter.
3

‘hﬂﬂk.

. The response has the same variance for all values of the covariate
(Check residuals vs fitted values plot).

nw(ou.

The covariate and the response are linearly related (Check residuals
vs fitted values plot).

. The response values are independent of each other (No way to
check; must trust experimental design).

Mt d s
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Generating diagnostic plots from 1m() with plot ()

plot(1lm_out,which = 2)

Q-Q Residuals

<+ —
» o
© N —
-
S
3 o -
8 o _
N |
©
s <
8 |
&
N T - 0682

00 0237

I I I I I I I I

-3 -2 —1 0 1 2 3

Theoretical Quantiles
Im(Y ~ X)
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plot (1Im_out,which = 1)

Residuals

—4 -2

—6

Residuals vs Fitted

11

13 14 15

Fitted values
Im(Y ~ Xx)

17
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The abalone...

@i/Red Sna,

Sweet Shrimp

Photo on the left by Sharktopus - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=14082271
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Abalone data example

Predict shucked weight of an abalone by its length.

csv <- url("https://people.stat.sc.edu/gregorkb/data/abalone.csv")

abalone <- read.csv(csv,col.names = c("Sex",
"Length",
"Diameter",
"Height",
"Whole Wt",
"Shucked_Wt",
"Viscera Wt",
"Shell _Wt",
"Rings"))

Y <- abalone$Shucked Wt

x <- abalone$Length

n <- length(Y)

There are n = 4176 records. Data come from Nash and Ford (1995).
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1ml <- Im(Y~x)

plot(Y~x)
abline (1m1)
(9]
. o)
O O
0D, o
O. ) .
>_
0o _|
o
o)
g ] O O ('T’l'l(‘ll‘l‘l‘1<l‘1*1‘lNmm?
I I | l
0.2 0.4 0.6 08
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Try transforming x:

x3 <- x*%*3
1m2 <- 1Im(Y ~ x3)
plot(Y ~ x3); abline(1m2)

L0
h

1.0

0.5

0.0

X3
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plot (1m2,which = 1)

Residuals vs Fitted

© _
© 10R75 15280
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T sl °® : 8 o o
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&) O ] a%) C
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— OO = 8a80 O
O O © 0 O
<.
T T | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fitted values
Im(Y ~ x3)
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[
Could transform both Y and x: i‘ gy = y
4 ~
logY <- log(Y); logx <- log(x) d oy ¥ = ~
1m3 <- Im(logY ~ logx) I; *

plot(logY~logx); abline(1m3)

|. = o*P"J’x
A dy dx
Yy
O_
AN
|
>
(@)
CHE
© _
|

—2.5 -2.0 -1.5 -1.0 -0.5

logx
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plot (1lm3,which = 2)

Q-Q Residuals
0 _|
A 12100
26270
o _ 12160

Standardized residuals
5
|

I I I
-2 0 2

Theoretical Quantiles
Im(logY ~ logx)
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plot (1m3,which = 1)

Residuals vs Fitted
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Fitted values
Im(logY ~ logx)
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Transforming variables to obtain a linear relationship

Take care how to interpret 3, after transforming the data.

Example: Log transforming x and Y gives 3, a %-change interpretation:

dlogy 1 d dx
p =bi- &= —=0—
x x Y x

logy = By + B logx <=
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Abalone data example (cont)

We must back-transform prediction intervals if we have transformed Y.

xnew <- 0.5

newdata <- data.frame( logx = log(xnew))

pi_logY <- predict(lm3,newdata = newdata, int = "pred")
pi_logY

fit lwr upr
1 -1.335636 -1.724831 -0.946441

pi <- exp(pi_logY)
pi

fit lwr upr
1 0.2629909 0.1782032 0.3881199
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plot(Y~x,col="gray"); logx <- seq(min(logx) ,max(logx),length=500)
newdata <- data.frame(logx = logx)

logy_hat <- predict(lm3,newdata = newdata,int = "pred")
lines(exp(logy_hat[,1]) ~ exp(logx), col = "red")
lines(exp(logy_hat[,2]) ~ exp(logx), col = "red", 1ty = 3,1lwd=1.5)
lines(exp(logy_hat[,3]) ~ exp(logx), col = "red", 1ty = 3,1lwd=1.5)

L0
h

1.0

0.5

0.2 0.4 0.6 0.8
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Outliers in simple linear regression

Outlying data points can have a large influence on the estimated
regression function.

Let’'s generate some data and then add an outlier:

n <- 20

b0 <- 1

bl <- -1/2
sg <- .2

x0 <- runif(n,0,5)

e <- rnorm(n,0,sg)

YO <- bO + bl * x0 + e
x <- c(x0,.3)

Y <- c(Y0,-1.3)
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plot (Y~x) ;points(Y[n+1]~x[n+1], col = "red")
abline (1m(Y0~x0))
abline(1m(Y~x), col = "red")

N

O yy A
O ‘\? i 0" o Fb'ls.
o | > S —
L , (7-““\{‘ o
o d\\\§\ {
. — \\\\
> Z \[/
p— O ~
o | & > ~\s§§
| \‘\

The red data point appears to exert an undue influence over the fit.
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Leverage and Cook’s distance

The leverage of a point (x;,Y;) among (x{,Y7),..., (x,,Y, ) is

1

1 (r;—z,)?
| L= — v n
it " S

rr

Leverage only shows outlying-ness in the x direction.

Cook’s Distance measures how much each data point changes the fit:
q“ﬁ, thnr J_g‘l P°M+I: .
2

1l <~ A e lev,
_ . 2 ? ? S
D, = S jEZl(Yj Yiy)” = 252 (1 —lev)? fori=1,...,n,

where ffj@ is the jth fitted value from the model fitted without obs 7.

L“%A—&L’s '.""" o VC“ O(J'ﬁ q‘[' X"'XJ-
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Make a plot of the Cook's distances

plot (Im(Y~x) ,which = 4)

Cook's distance

0.5 1.0 1.5

0.0

Cook's distance

12
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Code to compute Cook's distances

n <- length(Y)

xbar <- mean(x)

Ybar <- mean(Y)

rxY <- cor(x,Y) # Pearson's correlation coefficient
blhat <- rxY * sd(Y)/sd(x)
bOhat <- Ybar - blhat * xbar
Sxx <- sum((x - xbar)~2)

lev <- 1/n + (x - xbar) 2/Sxx
Yhat <- bOhat + blhat * x
ehat <- Y - Yhat

sgsghat <- sum(ehat~2)/(n-2)

cooksD <- ehat™2 / (2*sgsqghat) * lev / (1 - lev)~2
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Two-sample t-test by simple linear regression

Let Y £ Normal(p,;,0%), j=1,...,n,, 1 = 1,2 and consider

Hy: po — gy =0 versus Hy: py — pq # 0.

The (equal-variances) two-sample t-test uses the test statistic

T L Y2 o Yl
stat 1 1 )
Spooled n_1 T n_2

where 7, = n; ! Z?il Y, i=1,2 and

S§ B (ny —1)S% + (ny — 1)5227 o 1 i _

ooled
ny + ny — 2

We reject H,, at significance level av if [Ty | > ¢, 5 4/0-
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Appendicitis example

Look again at the data from Marcinkevics et al. (2023).

link <- url("https://people.stat.sc.edu/gregorkb/data/hrbc.csv")
data <- read.csv(link)

head(data)

hem rbc sex  age diag
1 14.8 5.27 female 12.68 appendicitis
2 15.7 5.26 male 14.10 no appendicitis
3 11.4 3.98 female 14.14 no appendicitis
4 13.6 4.64 female 16.37 no appendicitis
5 12.6 4.44 female 11.08 appendicitis
6 12.5 4.96 male 11.05 no appendicitis

Is the mean hemaglobin level the same in children with and without
appendicitis (ignoring rbc, age, and sex)?
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Appendicitis example (cont)

boxplot(data$hem ~ data$diag)

o)
© _| @ O
A |
| [}
1 ]
e < _| ! :
0)1—
‘w‘ T
SC\I I 1
© ~— ' '
go ! '
' o)
o _| 2
2 0
o - o)
I I

appendicitis no appendicitis

data$diag
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Appendicitis example (cont)

t.test(data$hem ~ data$diag, var.equal = TRUE)

Two Sample t-test

data: data$hem by data$diag
t = -0.49212, df = 760, p-value = 0.6228
alternative hypothesis: true difference in means between group appendicitis and
95 percent confidence interval:
-0.2038964 0.1221585
sample estimates:

mean in group appendicitis mean in group no appendicitis

13.33229 13.37316
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Appendicitis example (cont)

Let the Y, be the hemaglobin values and define an indicator variable as

T, = forv.=1,...,n.

1

0 if no appendicitis
1 if appendicitis

Then in the SLR model Y, = 3, + B,z + €, we have

» 50 = HMno app
» 6() + Bl — :uapp
> 51 — :uapp — Mno app

The t test in the simple linear regression setup of
Hy: 8, =0 versus Hy;: 8; #0
will give the same p value as the equal-variances two-sample t test of

Hy: fhapp = Moo app = 0 versus Hy: p, o0 — g app 7 0. Cool!
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Exercise: Show that in the above setup we have

Y2 B Yl

S

Do it in steps, showing:

_ B
a-/\/ Sa:a:.

1
pooled\/ n, - n_2

L fy=Y,

2. 1 =Y, =Y,
3'(/)\-_‘Sfpooled

4. 1/3/S,, =/ L+ + L
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Appendicitis example (cont)

Prepare the data:

Y <- data$hem
x <- as.numeric(data$diag == "appendicitis")
head(cbind (Y, x))

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]

14.
15.
11.
13.
12.
12.

O O O N 00 <
O, OO O+~ W™
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summary (1m(Y~x))

Call:
Im(formula = Y ~ x)

Residuals:
Min 1Q Median 3Q Max
-5.1323 -0.7323 -0.0323 0.6677 4.1677

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 13.37316 0.06375 209.782 <2e-16 *x*x
X -0.04087 0.08305 -0.492 0.623

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

Residual standard error: 1.128 on 760 degrees of freedom
Multiple R-squared: 0.0003186, Adjusted R-squared: -0.0009968
F-statistic: 0.2422 on 1 and 760 DF, p-value: 0.6228
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Automatic if we designate the predictor as a “factor” (but watch sign!).

x <- as.factor(data$diag)
summary (1m(data$hem ~ x))

Call:
Im(formula = data$hem ~ x)

Residuals:
Min 1Q Median 3Q Max
-5.1323 -0.7323 -0.0323 0.6677 4.1677

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 13.33229 0.05322 250.490 <2e-16 **x*
xno appendicitis 0.04087 0.08305 0.492 0.623

Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 " ' 1

Residual standard error: 1.128 on 760 degrees of freedom
Multiple R-squared: 0.0003186, Adjusted R-squared: -0.0009968
F-statistic: 0.2422 on 1 and 760 DF, p-value: 0.6228
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The importance (or unimportance) of Normal error terms

Generate some data with a right-skewed error term distribution:

b0 <- 0;bl <- 1;n <- 500;x <- rnorm(n); e <- rgamma(n,shape = 3/2, scale = 2/3) - 1
Y <- bO + blxx + e
plot(Y~x) ;1m_out <- 1m(Y~x);abline(lm_out,col = "red")
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Check the Normal quantile-quantile plot of the residuals.

plot(lm_out,which = 2)

Standardized residuals

Q-Q Residuals
440
4570
4270
O
O O OQONXTRoI
I I | | | | l
h ” - ° 1 2 3

Theoretical Quantiles
Im(Y ~ x)
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Generate a large number of such data sets and obtain 3, for each one.

S <= 300
blhat <- numeric(S)

for(s in 1:8){

x <- rnorm(n)

e <- rgamma(n,shape = 3/2, scale = 2/3) - 1
Y <- bO + bl*x + e

1lm_out <- 1m(Y~x)

blhat[s] <- coef(1lm_out) [2]
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Check if the ﬁAl values have a Normal distribution.

qgnorm(scale(blhat))
abline(0,1)

Normal Q-Q Plot

Sample Quantiles
0
|

Theoretical Quantiles
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