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Rental rates of commercial properties example

These data are from Kutner et al. (2005).

link <- url("https://gregorkb.github.io/data/KNLIcp.txt")

cp <- read.table(link,col.names=c("rent","age
cp$sqft/10000 # rescale sqft

cp$sqft <-
head (cp)

rent age

13.5 1

12.0 14

10.5 16

15.0 4

14.0 11
5

10.5 (15
o ad

OOk WN -

optx vac sqft
5.02 0.14 12.3000
8.19 0.27 10.4079
3.00 0.00 3.9998
10.70 0.05 5.7112
8.97 0.07 6.0000
9.45|O.24'10.1385 )

n <- nrow(cp)

There are n = 81 data points.

, optx","vac”,

"Sqft"))
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Setup

@‘o 1‘\ (’é“l ?n\)
Consider data (¥gg@29), ..., @), with each x; = (z;1,...,%;,) .

The multiple linear regression model is T

)/;: :/30_'_3:%'151_'_'”_'_331'19529—'_57;, 7/: 1,...,72/,

where
» x,,...,x, are vectors in RP of covariate or predictor values.
» Y,,..,Y are the response values
» 54,05, 53, are the regression coefficients.
» c,,...,e, are iid Normal(0, o?) error terms.

P 52 is the error term variance.
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Goals in multiple linear regression

he error term variance o~.

2

< / PArigfm inference on\f3,, ...

, 8. &

uild a prediction interva

e

gression coefficients 5, and 0y, ..., B,

at any x_..%

r““‘“l |

Tnewr,

l Naews, P

11111

-

Beyond the above, in multiple linear regression we wish to

8. Test for significance of a subset of covariates

Z6. Decompose the variation in Yinto (sums of ) sums of squares. \
. Check whether the model assumptions are satisfied.
8. ldentify outliers and understand their effects.

9. Understand how correlations among the covariates affect inferences

10. Do variable selection

Latter goals considered in part 2/2.
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L east-squares estimation of regression coefficients

S A - :f-n" ,7?.-.
g1p (ped: po= T F
f‘bl - : C"t’ -%a) (Yt"?"\
fery

Define the squared error criterion as

n

Q(bg, by, -, b,) = Z(Yz — (bg + by + - + bp%'p))Q-
i—1

Suppose Q(bg, by, ..., b,) is uniquely minimized at (80,81, s By).

Then we call BAO, Bl, ,BAp the least-squares estimators of 5y, 8y, ..., 5,,.

The best way to compute 5y, 51, ..., 5, is with matrix calculations...

A= ) x> |
P %,

2%
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Linear regression model in matrix form

Write equations[?i = Po t 0y + -+ x;,0, teffori=1,....n, as

'

—— /ﬁ =0 + B1%17 + -+ Bpr—l_ €1
Y5| =100 + b1y + - + BTy, HE2

—

€1

€

’ € = -2

n x| .
€,

Then the above equations can be written in matrix form as|Y = Xb + e.

X ¢ /(O(esfxu un"t’x ‘
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| east-squares estimators in matrix form

4
f'\
g ©
Provided ZXTX is invertible | the entries of the vector {’;\:
|
b (XTX)1XTy| = | : |<
A
give the least-squares estimators| 5y, 51, ..., 5,,. : i -

Important: Can only compute b if no column of X can be constructed
as a linear combination of other columns (equivalent to X?X invertible).

8/35



Estimating the error term variance £ o N 60‘0}3
V= (504’(‘(7‘:. ke Xp + &

After obtaining BAO, BAl, ey Bp, define the

P fitted values as lA/z = Bo + 315132'1 + e Bp%‘p

P residualsas &, =Y, — Y, - , -

= 0
fore=1,...,n. f"
Then an unbiased estimator of o2 is given by
SLi (P=2): 52 =
L4} a1
2, L LL  n T

n—2 ¢ = //_\_ Z Ct: - 2143

n-(ptV) =

5:: L i(?."?\)t "6'7 }'1‘—}.
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Rental rates of commercial properties example (cont)

Estimate the regression coefficients and the error term variance:

Y <- cp$rent

X <- cbind(rep(1l,n),cp$age,cpfoptx,cp$vac,cpPsqft)
bhat <- solve(t(X) %*% X) %x%h t(X) %x/% Y
as.numeric (round(bhat,5))

[1] 12.20059 -0.14203 0.28202 0.61934 0.07924

Yhat <- X 7%/ bhat

ehat <- Y - Yhat

p <- ncol(X) - 1

sgsqghat <- sum(ehat™2) / (n - (p + 1))
sgsqghat

[1] 1.292508
_p—
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Interpretation of the slope parameters

Consider what stories 5, 5, ..., 5, tell in the MLR model

» 5,, as in SLR, just gives the function the right “height”.
> [, is the amount by which the mean of Y changes due to a 1-unit
increase in covariate 7, with all other variables held fixed.

For the commercial properties data, the estimated model is
rent = 12.2 4 age(—0.14) + optx(0.28) + vac(0.62) + sqft(0.08),

so the effect of having 10000 more sqft (all else being equal) is an
increase of 0.08 in expected rent.

Do not omit all else being equal (or ceteris paribus in the Latin ;-)!
- e
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Confidence intervals for the slope parameters

Let Q = (XTX) ! with {1, the diagonal entry corresponding to (3.

S
P Then the estimator ﬁAj is distributed as | sLe
A L
: - . N
ﬁmj 5] ~ Normal (537 0-2933) . Ps ~ N ((:‘) ¢ 1 YO
l - - “ ’
b; P “Studentizing” the above gives g =z (. -%)
xk s
~ | o
B, — 8,

~t :
~ n—(p+1)
0/ b Z
» Soa (1 —a)l00% confidence interval for f3; is

( 5.7' + tn—(p+1),a/23 \ ij‘

e

P We often write 5.€.(3;) = 7./

jj» S-e. for standard error.
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Rental rates of commercial properties example (cont)

Construct 95% confidence intervals for the slope coefficients.

alpha <- 0.05

Om <- solve(t(X) %x*% X)

om <- diag(0Om)

ta2 <- gt(1-alpha/2,n - (p + 1))

se <- sqrt(sgsghat * om)

lo <- bhat - ta2 * se

up <- bhat + ta2 * se

cis <- round(cbind(bhat,lo,up),4)
colnames(cis) <- c("estimate","lower","upper")
rownames (cis) <- c("intercept","age","optx","vac","sqft")
print(cis)

estimate lower  upper
intercept 12.2006 11.0495 13.3517

age -0.1420 -0.1845 -0.0995
optx 0.2820 0.1562 0.4078
vac 0.6193 -1.5452 2.7839
sqft 0.0792 0.0517 0.1068
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Tests of hypotheses about the slope coeffcients

We most often test hypotheses about the 5]- of the form

Hy: 8, <0 Hy: B; #0 Hy: 8;>0.

—

Reject or fail to reject H; based on the value of the test statistic

) n- (p+)
Ttest — 5_(5&‘ OB .‘

JJ M |
-~ o
Lot

Rejection rules for the above at significance level o are

Ttest < _tn—(p—l—l),oz or ‘Ttest‘ > tn—(p+1),a/2 or Ttest > tn—(p—i—l),a‘

The corresponding p-values are, with 1"~ ¢, _ .4y, the probabilities

P(T < Ttest) or 2 X P(T > |Ttest|> or P(T > Ttest)'

14 /35



Rental rates of commercial properties example (cont)

Obtain p-values for testing Hy: 3, =0 vs Hy: (3, # 0 for each j.

sehat <- sqrt(sgsghat * om)
Tstat <- bhat / sehat
pval <- 2x(1 - pt(abs(Tstat),df =

print (summ)

estimate
intercept 12.2006
age -0.1420
optx 0.2820
vac 0.6193
sqft 0.0792

sehat
0.5780
0.0213
0.0632
1.0868
0.0138

Tstat
21.1099
-6.6549

4.4642
0.5699
5.7224

O O O OO

n- (p+1)))
summ <- round(cbind(bhat,sehat,Tstat,pval),4)
colnames (summ) <- c("estimate","sehat","Tstat","pval")

rownames (summ) <- c("intercept","age","optx

pval

.0000
.0000
.0000
.5704
.0000

,"vac",
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The Im(), summary(), and confint () functions in R

lm_out <- 1lm(rent ~ age + optx + vac + sqft, data = cp)
summary (1m_out)
Call:
Im(formula = rent ~ age + optx + vac + sqft, data = cp) A
. —0

Residuals: - = (’)/_

Min 1Q Median 3Q Max | perr ~ ..
-3.1872 -0.5911 -0.0910 0.5579 2.9441 ° JL)J

~A A 6
Coefficients: PoslPraCF Hu s:oL}
Estimate| Std. Error t value ¢ lyots

(Intercept)) 12.20059 0.57796 Y21.110 f’"*
age -0.14203 0.02134| |-6.655
optx 0.28202 0.06317 /r' x
vac 0.61934 | |1.08681 : beo
sqft 0.07924 0.01385 5.722 (1. A
_— ‘7L : g JI“S
Signif. codes: O '#x*' 0.001 'x*' 0.01 '%x' 0.05 '.' 0.1 ' ' 1

(q+0) = n-Ce+o

Q Residual standard error:|1.137|on 76 degrees of freedomf?‘_' 81 -
:;;!Multiﬁle|R—squared: 0.5847, Adjusted R-squared: 0.5629
F-statistic: 26.76/bn 4 and DF, p-value: 7.272e-14

N ' n=gl P4



confint (1m_out)

2.5 %
(Intercept) 11.04948640
age -0.18454113
optx 0.15619789
vac -1.54523184
sqft 0.05166283

confint (lm_out, level =

0.5 %
(Intercept) 10.67358041
age -0.19842249
optx 0.11511023
vac -2.25210110
sqft 0.04265617

97.5 Y%
13.35168536
-0.09952615

0.40783517
2.78391885
0.10682321

.99)

99.5 %
13.7275914
-0.0856448

0.4489228
3.4907881
0.1158299
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Cl for the mean and Pl for Y, . at x .

" new
A A .
sbp % Y > [5 + (s|7h‘w ° C’io ‘F" ﬁb* r‘c*mcw °
M new © A o &
Ync.w = ‘b""“v”z wn -
S wx
For a new vector of covariate values x_.., let , n
© - o ! x -\
SLE Pt Taew & baeran T[4 o faen -5

Ynew — 50 + lenew,l T+t Bpxnew,p

» A (1—a)x100 Clfor By + By %01 + =+ ByTrey.p IS given by

Ynew itn—(p—l—l),a/Qa- V Qnew’

» A (1—a«a)x 100 Pl for Y, corresponding to x,_. is given by
Ynew i tn—(p—l—l),a/Qa-@ Qnew?
where Qnew — igewﬂ inew with inew — (1 Lhew,1 xnew,p)T'

‘.L
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Rental rates of commercial properties example (cont)

Build 95% CI for the average rent of properties with age = 10, optx =
7, vac = 0.20, and sqft = 8.

xnew <- c(1,10,7,.2,8)

om_new <- t(xnew) %*J Om %*J/, xnew
Ynew_hat <- t(xnew) %x*7 bhat

seci <- sqrt(sgsghat) * sqrt(om_new)
loci <- Ynew_hat - ta2 * seci

upci <- Ynew_hat + ta2 * seci

The confidence interval is (13.036, 13.988).
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Now build a 95% PI for the rent of a single such a property.

sepi <- sqrt(sgsghat) * sqrt( 1 + om_new)
lopi <- Ynew_hat - ta2 * sepi
uppli <- Ynew_hat + ta2 * sepi

The prediction interval is (11.198,15.826).

20/ 35



The predict () function in R

newdata <- data.frame(age = 10, optx = 7, vac = 0.20, sqft = 8)
predict(1lm_out, newdata = newdata, int = "conf")

fit lwr upr
1 13.51218 13.03616 13.9882

predict(1lm_out, newdata = newdata, int = "pred")

fit lwr upr
1 13.51218 11.19838 15.82598

21/35



Sums of squares in multiple linear regression

QU’% AL hz-(? - CL;:— box, 4+ L,.wq,‘)j’

We decompose the variation in Y7, ..., Y, by defining the:
P Total sum of squares: SSp , = Z?:l(YZ —Y, )2 = R("%, 0..--,%

P Regression sum of squares: SSg,, = Z:L:l(f/% —Y )2
» Error sum of squares: SSg.... = Z:”:l(Y,L —Y))%= & (o, BruBp)

We have SSTOt — SSReg —|_ SSEI‘I‘OI"
S SSem

SSios 17 S

The coefficient of determination is defined as R? =

» R%e]0,1]

» Proportion of variation in Y “explained” by the covariates z, ..., T,.
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The mean squares in multiple linear regression

The SS, appropriately scaled, follow chi-square distributions:

P SStoi /0% ~ XA_1 (Drot)
> SSReg /02 ~ X}%(¢Reg)

> SSError /0-2 ~ Xi_(p+1)1

where and are noncentrality parameters.
Tot Reg

Dividing S5g., and S55g,,, by their dfs, we define:

SSR.
P Regression mean square: MSg,, = Reg
p
SSError
» Error mean square: MSg,.. =
n—(p+1)

MSError
SS76 /(n— 1)
Adjustment “penalizes” the inclusion of additional covariates.

Moreover, define the adjusted R squared as R? =1 —
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The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source Df SS MS F value p-value

Reg p SSReg MSReg Ftest P(F > Ftest)
Error n— (p+1) SSError MSError

Total n—1 SS Tt

This is an example of an ANOVA table.

The F-value and the p-value we will discuss later in these slides.
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Building the ANOVA table

Ybar <- mean(Y)

SST <- sum((Y - Ybar) ~2)
SSR <- sum((Yhat - Ybar)~2)
SSE <- sum((Y - Yhat)~2)
MSR <- SSR / p

MSE <- SSE / (n-(p+1))
Fstat <- MSR / MSE

pval <- 1 - pf(Fstat,1,n-2)

Source Df SS MS F value p-value
Regression 4 138.33 3458 26.76 0
Error 6 98.23 1.29

Total 80 236.56

Moreover R? = 0.585 and R% = 0.563.
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ANOVA quantities in output from 1m() with summary ()

1m_out <- 1lm(rent ~ age + optx + vac + sqft, data = cp)
summary (1m_out)
Call:
Im(formula = rent ~ age + optx + vac + sqft, data = cp)
Residuals:

Min 1Q Median 3Q Max

-3.1872 -0.5911 -0.0910 0.5579 2.9441

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 12.20059 0.57796 21.110 < 2e-16 **x*

age -0.14203 0.02134 -6.655 3.89e-09 *x*x*

optx 0.28202 0.06317 4.464 2.75e-05 x*x*x*

vac 0.61934 1.08681 0.570 0.57

sqft 0.07924 0.01385 5.722 1.98e-07 x**x

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.0 '.' 0.1 ' ' 1

Residual standard error: 1.137 on 76 degrees of freedom
Multiple R-squared: 0.5847, Adjusted R-squared: 0.5629
F-statistic: 26.76 on 4 and 76 DF, p-value: 7.272e-14
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Sequential SS with anova() function (seldom use)

Sequential SS report the changes in SSi., from adding new variables.

anova(lm(rent ~ age + optx + vac + sqft, data = cp))

Analysis of Variance Table

Response: rent
Df Sum Sq Mean Sq F value Pr (>F)

age 1 14.819 14.819 11.4649 0.001125 x*x*
optx 1 72.802 72.802 56.3262 9.699e-11 *x*x*
vac 1 8.381 8.381 6.4846 0.012904 x*

sqft 1 42.325 42.325 32.7464 1.976e-07 **x

Residuals 76 98.231 1.293

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1
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The sequential SS depend on the order in which variables are added:

anova(lm(rent ~ optx + age + vac + sqft, data = cp))

Analysis of Variance Table

Response: rent
Df Sum Sq Mean Sq F value Pr (>F)

optx 1 40.503 40.503 31.3370 3.291e-07 **x*
age 1 47.117 47.117 36.4541 5.341e-08 **x*
vac 1 8.381 8.381 6.4846 0.0129 =

sqft 1 42.325 42.325 32.7464 1.976e-07 **x*

Residuals 76 98.231 1.293

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1
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Sequential model fits to obtain sequential SS

1ml <- 1m(rent ~ age, data = cp)

1m2 <- Im(rent ~ age + optx, data = cp)

1m3 <- 1lm(rent ~ age + optx + vac, data = cp)

1m4 <- Im(rent ~ age + optx + vac + sqft, data = cp)

SSR1 <- SST - sum(lmi$residuals™2)
SSR2 <- SST - sum(1lm2$residuals”2)
SSR3 <- SST - sum(1lm3$residuals™2)

SSR4 <- SST - sum(lm4$residuals”2)

seqSS <- c(SSR1,SSR2 - SSR1,SSR3 - SSR2, SSR4 - SSR3)
names (seqSS) <- c("age","optx","vac","sqft")

round (seqgSS,3)

age  optx vac sqft
14.819 72.802 8.381 42.325
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Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

1. The responses are normally distributed around the regression line
(Check QQ plot of residuals). If n is large this doesn’t matter.

2. The response has the same variance for all covariate values (Check
residuals vs fitted values plot).

3. The covariates and the response are linearly related (Check residuals
vs fitted values plot).

4. The response values are independent of each other (No way to
check; must trust experimental design).
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Generating diagnostic plots from 1m() with plot ()

plot(1lm_out,which = 2)

Q-Q Residuals
m —t
® 620
(4v]
- AN —
O
(7))
o T 7
k5
N @ 7
°
M j' —
©
C
N o
&5 |
® _| 06

I I I I I
—2 —1 0 1 2

Theoretical Quantiles
Im(rent ~ age + optx + vac + sqft)
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plot(lm_out,which = 1)

Residuals vs Fitted
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Fitted values
Im(rent ~ age + optx + vac + sqft)
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Leverage and Cook's distance in MLR

The leverage of a point (Y;,x;) among (Y;,%x¢),..., (Y, ,x ) is

lev, = entry ¢ on the diagonal of the matrix X(XX) " 1X.

Leverage only shows outlying-ness in the covariate space.

Cook's Distance measures how much each data point changes the fit:

1 LN 2 lev,
D. = _ Y.—Y. ..)2 = U ¢ fori=1,...,n,
" (p+1)5? j_zl( o) = e At "

where ffj(i) is the jth fitted value from the model fitted without obs %.
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plot (Im_out,which = 4)

Cook's distance

0.05 0.10 0.15

0.00

Cook's distance

62

80

I I I
20 40 60

Obs. number
Im(rent ~ age + optx + vac + sqft)
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