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Rental rates of commercial properties example

These data are from Kutner et al. (2005).

link <- url("https://gregorkb.github.io/data/KNLIcp.txt")
cp <- read.table(link,col.names=c("rent","age","optx","vac","sqft"))
cp$sqft <- cp$sqft/10000 # rescale sqft
head(cp)

rent age optx vac sqft
1 13.5 1 5.02 0.14 12.3000
2 12.0 14 8.19 0.27 10.4079
3 10.5 16 3.00 0.00 3.9998
4 15.0 4 10.70 0.05 5.7112
5 14.0 11 8.97 0.07 6.0000
6 10.5 15 9.45 0.24 10.1385

n <- nrow(cp)

There are 𝑛 = 81 data points.
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plot(cp)
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Setup

Consider data (𝑌1, x1), … , (𝑌𝑛, x𝑛), with each x𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)𝑇.
The multiple linear regression model is𝑌𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + ⋯ + 𝑥𝑖𝑝𝛽𝑝 + 𝜀𝑖, 𝑖 = 1, … , 𝑛,
where▶ x1, … , x𝑛 are vectors in ℝ𝑝 of covariate or predictor values.▶ 𝑌1, … , 𝑌𝑛 are the response values▶ 𝛽0, 𝛽1, … , 𝛽𝑝 are the regression coefficients.▶ 𝜀1, … , 𝜀𝑛 are iid Normal(0, 𝜎2) error terms.▶ 𝜎2 is the error term variance.
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Goals in multiple linear regression
As in simple linear regression, will learn how to

1. Estimate the regression coefficients 𝛽0 and 𝛽1, … , 𝛽𝑝.
2. Estimate the error term variance 𝜎2.
3. Perform inference on 𝛽1, … , 𝛽𝑝.
4. Build a CI for 𝛽0 + 𝛽1𝑥new,1 + ⋯ + 𝛽𝑝𝑥new,𝑝 at any xnew.
5. Build a prediction interval for 𝑌 at any xnew.
6. Decompose the variation in 𝑌 into (sums of) sums of squares.
7. Check whether the model assumptions are satisfied.
8. Identify outliers and understand their effects.

Beyond the above, in multiple linear regression we wish to

8. Test for significance of a subset of covariates
9. Understand how correlations among the covariates affect inferences

10. Do variable selection

Latter goals considered in part 2/2.
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Least-squares estimation of regression coefficients

Define the squared error criterion as𝑄(𝑏0, 𝑏1, … , 𝑏𝑝) = 𝑛∑𝑖=1(𝑌𝑖 − (𝑏0 + 𝑏1𝑥𝑖1 + ⋯ + 𝑏𝑝𝑥𝑖𝑝))2.
Suppose 𝑄(𝑏0, 𝑏1, … , 𝑏𝑝) is uniquely minimized at ( ̂𝛽0, ̂𝛽1, … , ̂𝛽𝑝).
Then we call ̂𝛽0, ̂𝛽1, … , ̂𝛽𝑝 the least-squares estimators of 𝛽0, 𝛽1, … , 𝛽𝑝.

The best way to compute ̂𝛽0, ̂𝛽1, … , ̂𝛽𝑝 is with matrix calculations…
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Linear regression model in matrix form
Write equations 𝑌𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + ⋯ + 𝑥𝑖𝑝𝛽𝑝 + 𝜀𝑖, for 𝑖 = 1, … , 𝑛, as

𝑌1 = 𝛽0 + 𝛽1𝑥11 + ⋯ + 𝛽𝑝𝑥1𝑝 + 𝜀1𝑌2 = 𝛽0 + 𝛽1𝑥21 + ⋯ + 𝛽𝑝𝑥2𝑝 + 𝜀2⋮𝑌𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + ⋯ + 𝛽𝑝𝑥𝑛𝑝 + 𝜀𝑛
Now set

Y = ⎡⎢⎢⎣
𝑌1𝑌2⋮𝑌𝑛

⎤⎥⎥⎦ , X = ⎡⎢⎢⎣
1 𝑥11 … 𝑥1𝑝1 𝑥21 … 𝑥2𝑝⋮ ⋮ ⋱ ⋮1 𝑥𝑛1 … 𝑥𝑛𝑝

⎤⎥⎥⎦ , b = ⎡⎢⎢⎣
𝛽0𝛽1⋮𝛽𝑝

⎤⎥⎥⎦ , e = ⎡⎢⎢⎣
𝜀1𝜀2⋮𝜀𝑛

⎤⎥⎥⎦
Then the above equations can be written in matrix form as Y = Xb + e.
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Least-squares estimators in matrix form

Provided X𝑇X is invertible, the entries of the vector

b̂ = (X𝑇X)−1X𝑇Y

give the least-squares estimators ̂𝛽0, ̂𝛽1, … , ̂𝛽𝑝.

Important: Can only compute b̂ if no column of X can be constructed
as a linear combination of other columns (equivalent to X𝑇X invertible).
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Estimating the error term variance

After obtaining ̂𝛽0, ̂𝛽1, … , ̂𝛽𝑝, define the▶ fitted values as ̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖1 + ⋯ + ̂𝛽𝑝𝑥𝑖𝑝▶ residuals as ̂𝜀𝑖 = 𝑌𝑖 − ̂𝑌𝑖
for 𝑖 = 1, … , 𝑛.
Then an unbiased estimator of 𝜎2 is given by𝜎̂2 = 1𝑛 − (𝑝 + 1) 𝑛∑𝑖=1 ̂𝜀2𝑖 .
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Rental rates of commercial properties example (cont)

Estimate the regression coefficients and the error term variance:

Y <- cp$rent
X <- cbind(rep(1,n),cp$age,cp$optx,cp$vac,cp$sqft)
bhat <- solve(t(X) %*% X) %*% t(X) %*% Y
as.numeric(round(bhat,5))

[1] 12.20059 -0.14203 0.28202 0.61934 0.07924

Yhat <- X %*% bhat
ehat <- Y - Yhat
p <- ncol(X) - 1
sgsqhat <- sum(ehat^2) / (n - (p + 1))
sgsqhat

[1] 1.292508

10 / 35



Interpretation of β Bp

Fitted model

Rät 12.2 0.14 Age 0.282 optx

0.62 Vac 0.079 soft



Interpretation of the slope parameters

Consider what stories 𝛽0, 𝛽1, … , 𝛽𝑝 tell in the MLR model𝑌𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + ⋯ + 𝑥𝑖𝑝𝛽𝑝 + 𝜀𝑖, 𝑖 = 1, … , 𝑛.▶ 𝛽0, as in SLR, just gives the function the right “height”.▶ 𝛽𝑗 is the amount by which the mean of 𝑌 changes due to a 1-unit
increase in covariate 𝑗, with all other variables held fixed.

For the commercial properties data, the estimated model is

rent = 12.2 + age(−0.14) + optx(0.28) + vac(0.62) + sqft(0.08),
so the effect of having 10000 more sqft (all else being equal) is an
increase of 0.08 in expected rent.
Do not omit all else being equal (or ceteris paribus in the Latin ;-)!
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Confidence intervals for the slope parameters
Let Ω = (X𝑇X)−1 with Ω𝑗𝑗 the diagonal entry corresponding to 𝛽𝑗.▶ Then the estimator ̂𝛽𝑗 is distributed aŝ𝛽𝑗 ∼ Normal (𝛽𝑗, 𝜎2Ω𝑗𝑗) .▶ “Studentizing” the above giveŝ𝛽𝑗 − 𝛽𝑗𝜎̂√Ω𝑗𝑗 ∼ 𝑡𝑛−(𝑝+1).▶ So a (1 − 𝛼)100% confidence interval for 𝛽𝑗 iŝ𝛽𝑗 ± 𝑡𝑛−(𝑝+1),𝛼/2𝜎̂√Ω𝑗𝑗.▶ We often write ŝ.e.( ̂𝛽1) = 𝜎̂√Ω𝑗𝑗, s.e. for standard error.
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Rental rates of commercial properties example (cont)

Construct 95% confidence intervals for the slope coefficients.
alpha <- 0.05
Om <- solve(t(X) %*% X)
om <- diag(Om)
ta2 <- qt(1-alpha/2,n - (p + 1))
se <- sqrt(sgsqhat * om)
lo <- bhat - ta2 * se
up <- bhat + ta2 * se
cis <- round(cbind(bhat,lo,up),4)
colnames(cis) <- c("estimate","lower","upper")
rownames(cis) <- c("intercept","age","optx","vac","sqft")
print(cis)

estimate lower upper
intercept 12.2006 11.0495 13.3517
age -0.1420 -0.1845 -0.0995
optx 0.2820 0.1562 0.4078
vac 0.6193 -1.5452 2.7839
sqft 0.0792 0.0517 0.1068
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Tests of hypotheses about the slope coeffcients
We most often test hypotheses about the 𝛽𝑗 of the form𝐻0: 𝛽𝑗 ≥ 0 or 𝐻0: 𝛽𝑗 = 0 or 𝐻0: 𝛽𝑗 ≤ 0𝐻1: 𝛽𝑗 < 0 𝐻1: 𝛽𝑗 ≠ 0 𝐻1: 𝛽𝑗 > 0.
Reject or fail to reject 𝐻0 based on the value of the test statistic𝑇test = ̂𝛽𝑗𝜎̂√Ω𝑗𝑗 .
Rejection rules for the above at significance level 𝛼 are𝑇test < −𝑡𝑛−(𝑝+1),𝛼 or |𝑇test| > 𝑡𝑛−(𝑝+1),𝛼/2 or 𝑇test > 𝑡𝑛−(𝑝+1),𝛼.
The corresponding p-values are, with 𝑇 ∼ 𝑡𝑛−(𝑝+1), the probabilities𝑃(𝑇 < 𝑇test) or 2 × 𝑃 (𝑇 > |𝑇test|) or 𝑃 (𝑇 > 𝑇test).
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Rental rates of commercial properties example (cont)

Obtain p-values for testing 𝐻0: 𝛽𝑗 = 0 vs 𝐻1: 𝛽𝑗 ≠ 0 for each 𝑗.

sehat <- sqrt(sgsqhat * om)
Tstat <- bhat / sehat
pval <- 2*(1 - pt(abs(Tstat),df = n - (p + 1)))
summ <- round(cbind(bhat,sehat,Tstat,pval),4)
colnames(summ) <- c("estimate","sehat","Tstat","pval")
rownames(summ) <- c("intercept","age","optx","vac","sqft")
print(summ)

estimate sehat Tstat pval
intercept 12.2006 0.5780 21.1099 0.0000
age -0.1420 0.0213 -6.6549 0.0000
optx 0.2820 0.0632 4.4642 0.0000
vac 0.6193 1.0868 0.5699 0.5704
sqft 0.0792 0.0138 5.7224 0.0000
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The lm(), summary(), and confint() functions in R
lm_out <- lm(rent ~ age + optx + vac + sqft, data = cp)
summary(lm_out)

Call:
lm(formula = rent ~ age + optx + vac + sqft, data = cp)

Residuals:
Min 1Q Median 3Q Max

-3.1872 -0.5911 -0.0910 0.5579 2.9441

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.20059 0.57796 21.110 < 2e-16 ***
age -0.14203 0.02134 -6.655 3.89e-09 ***
optx 0.28202 0.06317 4.464 2.75e-05 ***
vac 0.61934 1.08681 0.570 0.57
sqft 0.07924 0.01385 5.722 1.98e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.137 on 76 degrees of freedom
Multiple R-squared: 0.5847, Adjusted R-squared: 0.5629
F-statistic: 26.76 on 4 and 76 DF, p-value: 7.272e-14
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confint(lm_out)

2.5 % 97.5 %
(Intercept) 11.04948640 13.35168536
age -0.18454113 -0.09952615
optx 0.15619789 0.40783517
vac -1.54523184 2.78391885
sqft 0.05166283 0.10682321

confint(lm_out, level = .99)

0.5 % 99.5 %
(Intercept) 10.67358041 13.7275914
age -0.19842249 -0.0856448
optx 0.11511023 0.4489228
vac -2.25210110 3.4907881
sqft 0.04265617 0.1158299
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CI for the mean and PI for 𝑌new at xnew

For a new vector of covariate values xnew, let̂𝑌new = ̂𝛽0 + ̂𝛽1𝑥new,1 + ⋯ + ̂𝛽𝑝𝑥new,𝑝▶ A (1 − 𝛼) × 100 CI for 𝛽0 + 𝛽1𝑥new,1 + ⋯ + 𝛽𝑝𝑥new,𝑝 is given bŷ𝑌new + 𝑡𝑛−(𝑝+1),𝛼/2𝜎̂√Ωnew,▶ A (1 − 𝛼) × 100 PI for 𝑌new corresponding to xnew is given bŷ𝑌new + 𝑡𝑛−(𝑝+1),𝛼/2𝜎̂√1 + Ωnew,
where Ωnew = x̃𝑇

newΩ x̃new with x̃new = (1 𝑥new,1 ⋯ 𝑥new,𝑝)𝑇.
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Rental rates of commercial properties example (cont)

Build 95% CI for the average rent of properties with age = 10, optx =
7, vac = 0.20, and sqft = 8.

xnew <- c(1,10,7,.2,8)
om_new <- t(xnew) %*% Om %*% xnew
Ynew_hat <- t(xnew) %*% bhat
seci <- sqrt(sgsqhat) * sqrt(om_new)
loci <- Ynew_hat - ta2 * seci
upci <- Ynew_hat + ta2 * seci

The confidence interval is (13.036, 13.988).
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Now build a 95% PI for the rent of a single such a property.

sepi <- sqrt(sgsqhat) * sqrt( 1 + om_new)
lopi <- Ynew_hat - ta2 * sepi
uppi <- Ynew_hat + ta2 * sepi

The prediction interval is (11.198, 15.826).
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The predict() function in R

newdata <- data.frame(age = 10, optx = 7, vac = 0.20, sqft = 8)
predict(lm_out, newdata = newdata, int = "conf")

fit lwr upr
1 13.51218 13.03616 13.9882

predict(lm_out, newdata = newdata, int = "pred")

fit lwr upr
1 13.51218 11.19838 15.82598

21 / 35



Sums of squares in multiple linear regression

We decompose the variation in 𝑌1, … , 𝑌𝑛 by defining the:▶ Total sum of squares: SSTot = ∑𝑛𝑖=1(𝑌𝑖 − ̄𝑌𝑛)2▶ Regression sum of squares: SSReg = ∑𝑛𝑖=1( ̂𝑌𝑖 − ̄𝑌𝑛)2▶ Error sum of squares: SSError = ∑𝑛𝑖=1(𝑌𝑖 − ̂𝑌𝑖)2
We have SSTot = SSReg + SSError.

The coefficient of determination is defined as 𝑅2 = SSReg
SSTot

.▶ 𝑅2 ∈ [0, 1]▶ Proportion of variation in 𝑌 “explained” by the covariates 𝑥1, … , 𝑥𝑝.

22 / 35

b b b E 4 botbin bpxip

Q Fn 0

Poβ Pp

5



The mean squares in multiple linear regression
The SS, appropriately scaled, follow chi-square distributions:▶ SSTot /𝜎2 ∼ 𝜒2𝑛−1(𝜙Tot)▶ SSReg /𝜎2 ∼ 𝜒2𝑝(𝜙Reg)▶ SSError /𝜎2 ∼ 𝜒2𝑛−(𝑝+1),
where 𝜙Tot and 𝜙Reg are noncentrality parameters.
Dividing SSReg and SSError by their dfs, we define:▶ Regression mean square: MSReg = SSReg𝑝▶ Error mean square: MSError = SSError𝑛 − (𝑝 + 1)
Moreover, define the adjusted R squared as 𝑅̄2 = 1 − MSError

SSTot /(𝑛 − 1) .

Adjustment “penalizes” the inclusion of additional covariates.
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The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source Df SS MS F value p-value
Reg 𝑝 SSReg MSReg 𝐹test 𝑃(𝐹 > 𝐹test)
Error 𝑛−(𝑝+1) SSError MSError
Total 𝑛 − 1 SSTot

This is an example of an ANOVA table.
The F-value and the p-value we will discuss later in these slides.
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Building the ANOVA table

Ybar <- mean(Y)
SST <- sum((Y - Ybar)^2)
SSR <- sum((Yhat - Ybar)^2)
SSE <- sum((Y - Yhat)^2)
MSR <- SSR / p
MSE <- SSE / (n-(p+1))
Fstat <- MSR / MSE
pval <- 1 - pf(Fstat,1,n-2)

Source Df SS MS F value p-value
Regression 4 138.33 34.58 26.76 0
Error 76 98.23 1.29
Total 80 236.56

Moreover 𝑅2 = 0.585 and 𝑅̄2 = 0.563.
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ANOVA quantities in output from lm() with summary()
lm_out <- lm(rent ~ age + optx + vac + sqft, data = cp)
summary(lm_out)

Call:
lm(formula = rent ~ age + optx + vac + sqft, data = cp)

Residuals:
Min 1Q Median 3Q Max

-3.1872 -0.5911 -0.0910 0.5579 2.9441

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.20059 0.57796 21.110 < 2e-16 ***
age -0.14203 0.02134 -6.655 3.89e-09 ***
optx 0.28202 0.06317 4.464 2.75e-05 ***
vac 0.61934 1.08681 0.570 0.57
sqft 0.07924 0.01385 5.722 1.98e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.137 on 76 degrees of freedom
Multiple R-squared: 0.5847, Adjusted R-squared: 0.5629
F-statistic: 26.76 on 4 and 76 DF, p-value: 7.272e-14
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Sequential SS with anova() function (seldom use)

Sequential SS report the changes in SSReg from adding new variables.

anova(lm(rent ~ age + optx + vac + sqft, data = cp))

Analysis of Variance Table

Response: rent
Df Sum Sq Mean Sq F value Pr(>F)

age 1 14.819 14.819 11.4649 0.001125 **
optx 1 72.802 72.802 56.3262 9.699e-11 ***
vac 1 8.381 8.381 6.4846 0.012904 *
sqft 1 42.325 42.325 32.7464 1.976e-07 ***
Residuals 76 98.231 1.293
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The sequential SS depend on the order in which variables are added:
anova(lm(rent ~ optx + age + vac + sqft, data = cp))

Analysis of Variance Table

Response: rent
Df Sum Sq Mean Sq F value Pr(>F)

optx 1 40.503 40.503 31.3370 3.291e-07 ***
age 1 47.117 47.117 36.4541 5.341e-08 ***
vac 1 8.381 8.381 6.4846 0.0129 *
sqft 1 42.325 42.325 32.7464 1.976e-07 ***
Residuals 76 98.231 1.293
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Sequential model fits to obtain sequential SS

lm1 <- lm(rent ~ age, data = cp)
lm2 <- lm(rent ~ age + optx, data = cp)
lm3 <- lm(rent ~ age + optx + vac, data = cp)
lm4 <- lm(rent ~ age + optx + vac + sqft, data = cp)

SSR1 <- SST - sum(lm1$residuals^2)
SSR2 <- SST - sum(lm2$residuals^2)
SSR3 <- SST - sum(lm3$residuals^2)
SSR4 <- SST - sum(lm4$residuals^2)
seqSS <- c(SSR1,SSR2 - SSR1,SSR3 - SSR2, SSR4 - SSR3)
names(seqSS) <- c("age","optx","vac","sqft")
round(seqSS,3)

age optx vac sqft
14.819 72.802 8.381 42.325
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Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

1. The responses are normally distributed around the regression line
(Check QQ plot of residuals). If 𝑛 is large this doesn’t matter.

2. The response has the same variance for all covariate values (Check
residuals vs fitted values plot).

3. The covariates and the response are linearly related (Check residuals
vs fitted values plot).

4. The response values are independent of each other (No way to
check; must trust experimental design).
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Generating diagnostic plots from lm() with plot()
plot(lm_out,which = 2)
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plot(lm_out,which = 1)
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Leverage and Cook’s distance in MLR

The leverage of a point (𝑌𝑖, x𝑖) among (𝑌1, x1), … , (𝑌𝑛, x𝑛) is

lev𝑖 = entry 𝑖 on the diagonal of the matrix X(X𝑇X)−1X.
Leverage only shows outlying-ness in the covariate space.
Cook’s Distance measures how much each data point changes the fit:𝐷𝑖 = 1(𝑝 + 1)𝜎̂2 𝑛∑𝑗=1( ̂𝑌𝑗− ̂𝑌𝑗(𝑖))2 = ̂𝑒2𝑖(𝑝 + 1)𝜎̂2 lev𝑖(1 − lev𝑖)2 for 𝑖 = 1, … , 𝑛,
where ̂𝑌𝑗(𝑖) is the 𝑗th fitted value from the model fitted without obs 𝑖.
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plot(lm_out,which = 4)
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