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Rental rates of commercial properties example

As in part 1/2, consider these data from Kutner et al. (2005).

link <- url("https://people.stat.sc.edu/gregorkb/data/KNLIcp.txt")
commprop <- read.table(link,col.names=c("rent","age","optx","vac","sqft"))
commprop$sqft <- commprop$sqft/10000 # rescale sqft
head(commprop)

rent age optx vac sqft
1 13.5 1 5.02 0.14 12.3000
2 12.0 14 8.19 0.27 10.4079
3 10.5 16 3.00 0.00 3.9998
4 15.0 4 10.70 0.05 5.7112
5 14.0 11 8.97 0.07 6.0000
6 10.5 15 9.45 0.24 10.1385

n <- nrow(commprop)
p <- ncol(commprop) - 1

There are 𝑛 = 81 rows and 𝑝 = 4 predictors.
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Setup

Consider data (𝑌1, x1), … , (𝑌𝑛, x𝑛), with each x𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)𝑇.

The multiple linear regression model is

𝑌𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + ⋯ + 𝑥𝑖𝑝𝛽𝑝 + 𝜀𝑖, 𝑖 = 1, … , 𝑛,

where

▶ x1, … , x𝑛 are vectors in ℝ𝑝 of covariate or predictor values.
▶ 𝑌1, … , 𝑌𝑛 are the response values
▶ 𝛽0, 𝛽1, … , 𝛽𝑝 are the regression coefficients.
▶ 𝜀1, … , 𝜀𝑛 are iid Normal(0, 𝜎2) error terms.
▶ 𝜎2 is the error term variance.
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Goals in multiple linear regression

In part 1/2, we addressed these goals:

1. Estimate the regression coefficients 𝛽0 and 𝛽1, … , 𝛽𝑝.
2. Estimate the error term variance 𝜎2.
3. Perform inference on 𝛽1, … , 𝛽𝑝.
4. Build a CI for 𝛽0 + 𝛽1𝑥new,1 + ⋯ + 𝛽𝑝𝑥new,𝑝 at any xnew.
5. Build a prediction interval for 𝑌 at any xnew.
6. Decompose the variation in 𝑌 into (sums of) sums of squares.
7. Check whether the model assumptions are satisfied.
8. Identify outliers and understand their effects.

In part 2/2 we focus on these:

8. Test for significance of a subset of covariates
9. Understand how correlations among the covariates affect inferences

10. Do variable selection
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Review of F distributions

For 𝑊1 ∼ 𝜒2
𝜈1

(𝜙), 𝑊2 ∼ 𝜒2
𝜈2

independent, 𝑅 = 𝑊1/𝜈1
𝑊2/𝜈2

∼ 𝐹𝜈1,𝜈2
(𝜙).

𝐹𝜈1,𝜈2
(𝜙) denotes the 𝐹 distribution with

▶ numerator degrees of freedom 𝜈1
▶ denominator degrees of freedom 𝜈2
▶ noncentrality parameter 𝜙 ≥ 0

If 𝜙 > 0 the distribution is a non-central F distribution.

When 𝜙 = 0 we just write 𝐹𝜈1,𝜈2
to denote the “central” F distribution.

We will encounter ratios of sums of squares which have 𝐹 distributions.
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Plot of some F distribution pdfs

nu1 <- c(1,2,3,5,5,5,50,50)
nu2 <- c(3,3,3,10,10,10,50,50)
phi <- c(0,0,0,0,4,8,0,4)
f <- seq(.01,4,length=200)
dfmat <- matrix(0,length(f),200)
for(j in 1:length(nu1)){

dfmat[j,] <- df(f,df1 = nu1[j],df2=nu2[j],ncp=phi[j])

}
lab <- paste("(df1,df2,phi) = (",

apply(cbind(nu1,nu2,phi),1,paste,collapse = ","),
")",sep="")
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plot(NA,xlim = range(f),ylim = c(0,1.2*max(dfmat[-1,])),
xlab = "r",
ylab = "pdf of F distribution")

for(j in 1:length(nu1)) lines(dfmat[j,]~f, col = j)
legend(x = .5*max(f),y = 1.1*max(dfmat[-1,]),legend = lab,

col = 1:length(nu1), lty = 1,bty = "n", cex = .8)
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The overall F-test

We may wish to test whether any covariates are important, that is

𝐻0: 𝛽𝑗 = 0 for all 𝑗 = 1, … , 𝑝.

The overall F-test of significance is carried out as follows:

1. Fit the model with all the covariates and obtain the value

𝐹test =
MSReg

MSError
(=

SSReg /𝑝
SSError /(𝑛 − (𝑝 + 1))

)

2. Reject 𝐻0 at 𝛼 if 𝐹test > 𝐹𝑝,𝑛−(𝑝+1),𝛼.
3. Obtain p-value is 𝑃(𝐹 > 𝐹test), where 𝐹 ∼ 𝐹𝑝,𝑛−(𝑝+1).

This test statistic and p-value are reported by summary() on lm().
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Exercise: Show that the test statistic of the overall F test can be written

𝐹test =
MSReg

MSError
= (𝑛 − (𝑝 + 1))

𝑝
𝑅2

1 − 𝑅2 ,

where 𝑅2 is the coefficient of determination.

9 / 51



Exercise: Suppose you fit a regression model with 3 predictors on a data
set with 81 observations, and you obtain 𝜎̂ = 1.132 and 𝑅2 = 0.583.
Use this information to fill in the entire ANOVA table:

Source Df SS MS F value p-value
Regres-
sion

𝑝 SSReg MSReg 𝐹test 𝑃(𝐹 > 𝐹test)

Error 𝑛−(𝑝+1) SSError MSError
Total 𝑛 − 1 SSTot
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Testing for significance of a subset of covariates

Consider testing the significance of a subset 𝐷 ⊂ {1, … , 𝑝} of covariates:

𝐻0: 𝛽𝑗 = 0 for all 𝑗 ∈ 𝐷.

Use the full-reduced model F-test:

1. Let 𝑠 be the number of covariates in 𝐷 and compute

𝐹test = (SSError(Reduced) − SSError(Full))/𝑠
SSError(Full)/(𝑛 − (𝑝 + 1))

,

▶ “Full” is the model with all 𝑝 covariates.
▶ “Reduced” is the model after dropping the covariates in 𝐷.

2. Reject 𝐻0 at 𝛼 if 𝐹test > 𝐹𝑠,𝑛−(𝑝+1),𝛼.
3. Obtain p-value as 𝑃(𝐹 > 𝐹test), where 𝐹 ∼ 𝐹𝑠,𝑛−(𝑝+1).
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Rental rates of commercial properties example (cont)

Check whether vac and optx contribute significantly to the rent.

That is test 𝐻0: 𝛽vac = 0 and 𝛽optx = 0.

lm_red <- lm(rent ~ age + sqft, data = commprop)
lm_full <- lm(rent ~ age + optx + vac + sqft, data = commprop)
SSE_red <- sum(lm_red$residuals^2)
SSE_full <- sum(lm_full$residuals^2)
s <- 2 # significance of two covariates being tested
Fstat <- (SSE_red - SSE_full)/s / ( SSE_full / (n - (p + 1)))
alpha <- 0.05
F_crit <- qf(1 - alpha,s,n-(p+1))
pval <- 1 - pf(Fstat, 2, n - (p+1))

We obtain 𝐹test = 10.939 and 𝐹𝑠,𝑛−(𝑝+1),0.05 = 3.117, and the p-value is 0.
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Full-reduced model F test for a single covariate

If we test 𝐻0: 𝛽𝑗 = 0 for a single covariate using the full-reduced model
F test, the test statistic 𝐹test will be equal to the square of the test
statistic 𝑇test for testing 𝐻0: 𝛽𝑗 = 0 in the full model.

lm_red <- lm(rent ~ age + optx + sqft, data = commprop)
lm_full <- lm(rent ~ age + optx + vac + sqft, data = commprop)
SSE_red <- sum(lm_red$residuals^2)
SSE_full <- sum(lm_full$residuals^2)
s <- 1 # significance of a single covariate being tested
Fstat <- (SSE_red - SSE_full)/s / ( SSE_full / (n - (p + 1)))
sqrt(Fstat) # absolute value of the t-statistic from the full model

[1] 0.5698714
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Effect of correlations among the covariates

From before Var ̂𝛽𝑗 = 𝜎2Ω𝑗𝑗/𝑛. An alternate expression gives

Var ̂𝛽𝑗 = 1
1 − 𝑅2

𝑗

𝜎2

∑𝑛
𝑖=1(𝑥𝑗𝑖 − ̄𝑥𝑗)2 ,

where 𝑅2
𝑗 is the 𝑅2 from regressing 𝑥𝑗 on the other covariates.

So multicollinearity of 𝑥𝑗 with the other covariates “inflates” Var ̂𝛽𝑗:

▶ Makes confidence intervals for 𝛽𝑗 wider.
▶ Makes tests of 𝐻0: 𝛽𝑗 = 0 vs 𝐻1: 𝛽𝑗 ≠ 0 less powerful.

Call
1

1 − 𝑅2
𝑗

the variance inflation factor (VIF) for 𝑥𝑗, 𝑗 = 1, … , 𝑝.
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VIFs in commercial properties example

Add to the data set a spurious predictor highly correlated with age.

Check the effect of this on our inferences for 𝛽age.

# make new x correlated with age
x <- .5*commprop$age + rnorm(n)
commpropx <- cbind(commprop,x)
round(cor(commpropx),4)

rent age optx vac sqft x
rent 1.0000 -0.2503 0.4138 0.0665 0.5353 -0.2463
age -0.2503 1.0000 0.3888 -0.2527 0.2886 0.9672
optx 0.4138 0.3888 1.0000 -0.3798 0.4407 0.3839
vac 0.0665 -0.2527 -0.3798 1.0000 0.0806 -0.2692
sqft 0.5353 0.2886 0.4407 0.0806 1.0000 0.2496
x -0.2463 0.9672 0.3839 -0.2692 0.2496 1.0000
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plot(commpropx)

rent

0
15

0.
0

0.
6

12 16

−
2

6

0 5 15

age

optx

4 8 12

0.0 0.4

vac

sqft

10 30 50

−2 2 6 10

12
18

4
12

10
40

x

16 / 51



lm_out <- lm(rent ~ age + optx + vac + sqft, data = commpropx)
confint(lm_out)

2.5 % 97.5 %
(Intercept) 11.04948640 13.35168536
age -0.18454113 -0.09952615
optx 0.15619789 0.40783517
vac -1.54523184 2.78391885
sqft 0.05166283 0.10682321

lmx_out <- lm(rent ~ age + optx + vac + sqft + x, data = commpropx)
confint(lmx_out)

2.5 % 97.5 %
(Intercept) 11.05717975 13.37619729
age -0.33000466 -0.02199559
optx 0.15366342 0.40708021
vac -1.53392432 2.82479845
sqft 0.05208195 0.10795178
x -0.21814001 0.34814327

The width of the CI for 𝛽age was 0.085.

With the new covariate the width of the CI for 𝛽age becomes 0.308.

So including x in the model makes our estimation of 𝛽age less accurate.
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summary(lm_out)

Call:
lm(formula = rent ~ age + optx + vac + sqft, data = commpropx)

Residuals:
Min 1Q Median 3Q Max

-3.1872 -0.5911 -0.0910 0.5579 2.9441

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.20059 0.57796 21.110 < 2e-16 ***
age -0.14203 0.02134 -6.655 3.89e-09 ***
optx 0.28202 0.06317 4.464 2.75e-05 ***
vac 0.61934 1.08681 0.570 0.57
sqft 0.07924 0.01385 5.722 1.98e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.137 on 76 degrees of freedom
Multiple R-squared: 0.5847, Adjusted R-squared: 0.5629
F-statistic: 26.76 on 4 and 76 DF, p-value: 7.272e-14

The p-value for age is very small.
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summary(lmx_out)

Call:
lm(formula = rent ~ age + optx + vac + sqft + x, data = commpropx)

Residuals:
Min 1Q Median 3Q Max

-3.06666 -0.62492 -0.08164 0.63427 2.97383

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.21669 0.58205 20.989 < 2e-16 ***
age -0.17600 0.07731 -2.277 0.0257 *
optx 0.28037 0.06361 4.408 3.43e-05 ***
vac 0.64544 1.09400 0.590 0.5570
sqft 0.08002 0.01402 5.706 2.18e-07 ***
x 0.06500 0.14213 0.457 0.6488
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.143 on 75 degrees of freedom
Multiple R-squared: 0.5859, Adjusted R-squared: 0.5583
F-statistic: 21.22 on 5 and 75 DF, p-value: 3.662e-13

The p-value for age is not nearly as small when x is included!
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Getting VIFs with vif() from the car package

We can use the R package car from Fox and Weisberg (2019).

First time must install the package with install.package("car").

library(car)
vif(lm_out)

age optx vac sqft
1.240348 1.648225 1.323552 1.412722

vif(lmx_out)

age optx vac sqft x
16.104582 1.653511 1.327162 1.433596 15.903009

Note the change in VIF for age due to including x in the model!
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Variable selection

Sometimes the number of potentially important predictors is quite large.

Large 𝑝 tends to increase the VIFs, leading to low power.

So we may wish to discard some predictors. We briefly discuss:

1. Best subset selection with Mallow’s 𝐶(𝑝)
2. Forward and backward stepwise selection with AIC
3. LASSO selection

And most importantly:

▶ The dangers of naïve post-selection inference!!
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Best subset selection with Mallow’s 𝐶𝑝

Given 𝑞 available covariates, there are 2𝑞 possible subset models (why?).

Mallow’s 𝐶𝑝 can be used to compare subset models: Let

𝐶𝑝 = (𝑛 − (𝑝 + 1)) [MSError(subset)
MSError(all)

− 1] + (𝑝 + 1),

where

▶ 𝑝 is the number of predictors in the subset model.
▶ MSError(subset) is the MSError of the subset model.
▶ MSError(all) is the MSError of the model with all the covariates.

If the subset model is adequate, MSError(subset) estimates the same
target as MSError(all), so the first term should be small and 𝐶𝑝 ≈ 𝑝 + 1.

Can look at 𝐶𝑝 values for all subset models of each size 𝑝 = 0, 1, 2, … , 𝑞

Want smallest model such that 𝐶𝑝 ≈ 𝑝 + 1.
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Mallow’s 𝐶𝑝 on the rental properties data

Compute Mallow’s 𝐶𝑝 for a single subset model:

lm_all <- lm(rent ~ vac + age + optx + sqft, data = commprop)
lm_sub <- lm(rent ~ age + sqft, data = commprop)
MSE_sub <- sum(lm_sub$residuals^2) / (n - 3)
MSE_all <- sum(lm_all$residuals^2) / (n - 5)
Csub <- (MSE_sub / MSE_all - 1)*(n - 3) + 3
Csub

[1] 22.87781

This value is too large; the subset is not a good one.
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The regsubsets() function from the R package leaps
library(leaps) # first time run install.packages("leaps")
regsubsets_out <- regsubsets(rent ~ vac + age + optx + sqft, data = commprop)
summary(regsubsets_out)

Subset selection object
Call: regsubsets.formula(rent ~ vac + age + optx + sqft, data = commprop)
4 Variables (and intercept)

Forced in Forced out
vac FALSE FALSE
age FALSE FALSE
optx FALSE FALSE
sqft FALSE FALSE
1 subsets of each size up to 4
Selection Algorithm: exhaustive

vac age optx sqft
1 ( 1 ) " " " " " " "*"
2 ( 1 ) " " "*" " " "*"
3 ( 1 ) " " "*" "*" "*"
4 ( 1 ) "*" "*" "*" "*"

summary(regsubsets_out)$cp

[1] 53.585208 22.877809 3.324753 5.000000
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FIFA data
Wages and stats of male FIFA players in 2022 from Pedersen (2022).

link <- url("https://people.stat.sc.edu/gregorkb/data/fifa_usge.csv")
fifa <- read.csv(link)
colnames(fifa)

[1] "wage_eur" "age"
[3] "height_cm" "weight_kg"
[5] "nationality_name" "overall"
[7] "potential" "attacking_crossing"
[9] "attacking_finishing" "attacking_heading_accuracy"

[11] "attacking_short_passing" "attacking_volleys"
[13] "skill_dribbling" "skill_curve"
[15] "skill_fk_accuracy" "skill_long_passing"
[17] "skill_ball_control" "movement_acceleration"
[19] "movement_sprint_speed" "movement_agility"
[21] "movement_reactions" "movement_balance"
[23] "defending_standing_tackle" "defending_sliding_tackle"
[25] "goalkeeping_diving" "goalkeeping_handling"
[27] "goalkeeping_kicking" "goalkeeping_positioning"
[29] "goalkeeping_reflexes"

Predict wage from 28 covariates? Too many sub-models to consider!
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hist(fifa$wage_eur)

Histogram of fifa$wage_eur
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The wage distribution has some high outlying observations.
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hist(log(fifa$wage_eur))

Histogram of log(fifa$wage_eur)
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Perhaps better to consider the log of the wage.
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lm_wage <- lm(wage_eur ~ ., data = fifa)
plot(lm_wage,which = 1)
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lm_logwage <- lm(log(wage_eur) ~ ., data = fifa)
plot(lm_logwage,which = 1)
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Note the values in the nationality_name column:

table(fifa$nationality_name)

germany usa
1214 413

R will automatically make an indicator/dummy variable defined as

nationality_nameusa𝑖 = { 1 if usa
0 if german for 𝑖 = 1, … , 𝑛.
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赤池 弘次 (あかいけひろつぐ)

Introduced Akaike’s Information Criterion (AIC).
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Akaike’s Information Criterion (AIC) for comparing models

For a given model, i.e. set of covariates, AIC is defined as

AIC = 2(𝑝 + 1) − 2 ℓ(𝜎̂2, ̂𝛽0, ̂𝛽1, … , ̂𝛽𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟
log-likelihood

.

The log-likelihood is the log of the joint pdf of the data (STAT 512).

AIC can be used to compare several models for the same data.

The “best” model is the one which minimizes AIC.
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The extractAIC() function

The extractAIC function in R returns a modified version of AIC:

AIC∗ = 2(𝑝 + 1) + 𝑛 log(SSError /𝑛)

lm_out <- lm(log(wage_eur) ~ age + potential, data = fifa)
extractAIC(lm_out) # gives value p + 1 as well as AIC value

[1] 3.0000 -860.2624

# compute it "manually"
n <- nrow(fifa)
p <- 2
2*(p+1) + n * log(sum(lm_out$residuals^2)/n)

[1] -860.2624
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Comparing models using AIC

Compare two models for the FIFA data with AIC:

lm1 <- lm(log(wage_eur) ~ age + potential + height_cm, data = fifa)
extractAIC(lm1)

[1] 4.0000 -858.5413

lm2 <- lm(log(wage_eur) ~ height_cm + overall, data = fifa)
extractAIC(lm2)

[1] 3.000 -1377.386

The second model has a smaller value of AIC, so it is better according to
this criterion.
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Stepwise selection based on AIC

Stepwise selection:

▶ Backward: Begin with all the predictors and remove one at a time.
▶ Forward: Begin with no predictors and add one at a time.

In each step remove/add predictor to get largest decrease in AIC.

If a decrease in AIC is not possible, stop.
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Stepwise selection with fifa data

Use the step() function for backward selection:

lm_intercept <- lm(log(wage_eur) ~ 1, data = fifa)
lm_all <- lm(log(wage_eur) ~ ., data = fifa)

# backward selection
step_back <- step(lm_all,

direction = "backward",
scope = formula(lm_all),
trace = 0) # suppress printed output
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summary(step_back)

Call:
lm(formula = log(wage_eur) ~ age + height_cm + nationality_name +

overall + potential + attacking_crossing + attacking_finishing +
attacking_heading_accuracy + attacking_volleys + skill_dribbling +
skill_fk_accuracy + skill_ball_control + movement_sprint_speed +
movement_agility + movement_reactions + movement_balance +
defending_sliding_tackle, data = fifa)

Residuals:
Min 1Q Median 3Q Max

-1.81770 -0.42583 -0.00742 0.44183 2.26000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.285472 1.056816 -1.216 0.22403
age -0.018033 0.008311 -2.170 0.03018 *
height_cm -0.012306 0.005090 -2.418 0.01574 *
nationality_nameusa -0.102428 0.038424 -2.666 0.00776 **
overall 0.153692 0.007624 20.159 < 2e-16 ***
potential 0.025805 0.006486 3.978 7.25e-05 ***
attacking_crossing 0.004266 0.002123 2.009 0.04472 *
attacking_finishing -0.003433 0.002427 -1.415 0.15740
attacking_heading_accuracy 0.004529 0.001829 2.476 0.01337 *
attacking_volleys 0.005065 0.002464 2.056 0.03995 *
skill_dribbling 0.006814 0.003818 1.785 0.07450 .
skill_fk_accuracy 0.003723 0.001845 2.018 0.04372 *
skill_ball_control -0.005958 0.004151 -1.435 0.15141
movement_sprint_speed -0.002731 0.001744 -1.566 0.11754
movement_agility -0.008042 0.002766 -2.907 0.00370 **
movement_reactions 0.011193 0.003620 3.092 0.00202 **
movement_balance -0.005163 0.002830 -1.825 0.06824 .
defending_sliding_tackle -0.004565 0.001446 -3.156 0.00163 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6215 on 1609 degrees of freedom
Multiple R-squared: 0.7725, Adjusted R-squared: 0.7701
F-statistic: 321.4 on 17 and 1609 DF, p-value: < 2.2e-16
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Use the step() function for forward selection:

# forward selection
step_forw <- step(lm_intercept,

direction = "forward",
scope = formula(lm_all),
trace = 0) # suppress printed output
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summary(step_forw)

Call:
lm(formula = log(wage_eur) ~ overall + potential + attacking_volleys +

movement_agility + skill_fk_accuracy + nationality_name +
movement_reactions + defending_sliding_tackle + attacking_crossing +
age, data = fifa)

Residuals:
Min 1Q Median 3Q Max

-1.93782 -0.42630 -0.00072 0.44823 2.29004

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.7485849 0.3310448 -11.323 < 2e-16 ***
overall 0.1510192 0.0074671 20.225 < 2e-16 ***
potential 0.0259892 0.0064344 4.039 5.62e-05 ***
attacking_volleys 0.0042858 0.0016009 2.677 0.00750 **
movement_agility -0.0102281 0.0016175 -6.324 3.30e-10 ***
skill_fk_accuracy 0.0038679 0.0017634 2.193 0.02841 *
nationality_nameusa -0.0759454 0.0366090 -2.075 0.03819 *
movement_reactions 0.0113347 0.0036018 3.147 0.00168 **
defending_sliding_tackle -0.0026760 0.0009261 -2.889 0.00391 **
attacking_crossing 0.0042171 0.0018421 2.289 0.02219 *
age -0.0163448 0.0080810 -2.023 0.04328 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6231 on 1616 degrees of freedom
Multiple R-squared: 0.7703, Adjusted R-squared: 0.7689
F-statistic: 542 on 10 and 1616 DF, p-value: < 2.2e-16

Forward and backward stepwise selection may give different models!
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LASSO selection

The LASSO estimators ̂𝛽𝐿
0 , ̂𝛽𝐿

1 , … , ̂𝛽𝐿
𝑝 are obtained by minimizing

𝑄𝜆(𝑏0, 𝑏1, … , 𝑏𝑝) =
𝑛

∑
𝑖=1

(𝑌𝑖 − (𝑏0 + 𝑏1𝑥𝑖1 + ⋯ + 𝑏𝑝𝑥𝑖𝑝))2 + 𝜆
𝑝

∑
𝑗=1

|𝑏𝑗|,

where 𝜆 > 0 is a tuning parameter.

▶ The penalty term 𝜆 ∑𝑝
𝑗=1 |𝑏𝑗| can cause ̂𝛽𝐿

𝑗 = 0 for some 𝑗.

▶ For 𝜆 large enough, all the ̂𝛽𝐿
𝑗 will be equal to zero.

▶ So LASSO performs variable selection and estimation simultaneously.
▶ Drawback: Hard to build CIs based on ̂𝛽𝐿

0 , ̂𝛽𝐿
1 , … , ̂𝛽𝐿

𝑝 .
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Effect of LASSO penalty on the objective function

# simulate some data with centered X and centered y (eliminates intercept)
n <- 500;p <- 2
X <- scale(matrix(rnorm(n*p),n,p)); b <- c(2,1/4); e <- rnorm(n)
y <- drop(X %*% b) + e - mean(e)

# define least squares and LASSO objective functions
Q <- function(b,X,y) mean((y - X %*% b)^2)
Qlambda <- function(b,X,y,lambda) Q(b,X,y) + lambda * sum(abs(b))

# set LASSO penalty parameter
lambda <- 1

# evaluate Q and Qlambda over a grid of b1 and b2 values
b1seq <- seq(b[1]-2,b[1]+2,length=200)
b2seq <- seq(b[2]-2,b[2]+2,length=200)
Q_vals <- Qlambda_vals <- matrix(0,length(b1seq),length(b2seq))
for(i in 1:length(b1seq))

for(j in 1:length(b2seq)){

Q_vals[i,j] <- Q(b=c(b1seq[i],b2seq[j]),X,y)
Qlambda_vals[i,j] <- Qlambda(b=c(b1seq[i],b2seq[j]),X,y,lambda)

}
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# compute least squares and lasso estimator
bhat <- coef(lm(y~X-1))
bhat_lambda <- optim(par = c(0,0),fn = Qlambda,X = X, y = y,lambda = lambda)$par

# make contour plots of least-squares and LASSO objective functions
par(mfrow=c(1,2))
contour(z = Q_vals, x = b1seq, y = b2seq, main = "lambda = 0",xlab = "b1", ylab = "b2")
points(x = bhat[1],y = bhat[2]);abline(v = bhat[1], lty = 3);abline(h = bhat[2], lty = 3)

contour(z = Qlambda_vals, x = b1seq, y = b2seq, main = paste( "lambda =",lambda), xlab = "b1", ylab = "b2")
points(x = bhat_lambda[1],y = bhat_lambda[2]); abline(v = bhat_lambda[1],lty = 3);abline(h = bhat_lambda[2],lty = 3)
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LASSO on the FIFA data

Use cv.ncvreg() function from R package ncvreg.

Runs crossvalidation to choose the best value of 𝜆.

library(ncvreg) # first time run install.packages("ncvreg")

# prepare response vector and design matrix
y <- log(fifa$wage_eur)
X <- fifa[,-c(1,5)]
X$nationality <- ifelse(fifa$nationality_name == "usa",1,0)

# crossvalidation to choose lambda
lasso <- cv.ncvreg(X,y,penalty = "lasso")

43 / 51



lasso$fit$beta[,lasso$min] # estimates under the "best" lambda

(Intercept) age
-2.8209409392 -0.0104673603

height_cm weight_kg
-0.0054578578 0.0000000000

overall potential
0.1486544991 0.0292681339

attacking_crossing attacking_finishing
0.0033387453 0.0000000000

attacking_heading_accuracy attacking_short_passing
0.0018813248 0.0000000000

attacking_volleys skill_dribbling
0.0033542083 0.0004243427
skill_curve skill_fk_accuracy
0.0008408621 0.0027543693

skill_long_passing skill_ball_control
0.0000000000 0.0000000000

movement_acceleration movement_sprint_speed
-0.0010019224 -0.0011935706

movement_agility movement_reactions
-0.0065415902 0.0101236059

movement_balance defending_standing_tackle
-0.0029825671 -0.0007755575

defending_sliding_tackle goalkeeping_diving
-0.0021010923 0.0000000000

goalkeeping_handling goalkeeping_kicking
0.0000000000 0.0000000000

goalkeeping_positioning goalkeeping_reflexes
0.0000000000 0.0000000000
nationality

-0.0837490312
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plot(lasso$fit,log.l = TRUE)
abline(v = log(lasso$fit$lambda[lasso$min]), lty = 3)
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The dangers of post-selection inference

It is dangerous to:

1. Ask the data what hypotheses to test (what model to build).
2. Use afterwards the same data to perform inference (get p values).

Illustration:

Add 50 spurious predictors to the commercial properties data.

See how many we find to be significant.

n <- nrow(commprop)
X <- matrix(rnorm(n*50),n,50)
colnames(X) <- paste("x",1:50,sep="")
commpropX <- cbind(commprop,X)

lmX_out <- lm(rent ~ ., data = commpropX)
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summary(lmX_out)

Call:
lm(formula = rent ~ ., data = commpropX)

Residuals:
Min 1Q Median 3Q Max

-1.59062 -0.28456 0.05265 0.37467 1.32721

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.240240 0.804196 15.220 1.83e-14 ***
age -0.159799 0.032199 -4.963 3.71e-05 ***
optx 0.306053 0.088151 3.472 0.001821 **
vac -1.019504 1.626735 -0.627 0.536309
sqft 0.075606 0.019462 3.885 0.000631 ***
x1 0.081065 0.202076 0.401 0.691580
x2 -0.013859 0.215785 -0.064 0.949282
x3 0.353769 0.156937 2.254 0.032835 *
x4 -0.246326 0.214493 -1.148 0.261255
x5 0.094743 0.217846 0.435 0.667219
x6 -0.255471 0.179398 -1.424 0.166325
x7 0.044972 0.249455 0.180 0.858330
x8 -0.093089 0.173642 -0.536 0.596451
x9 -0.173610 0.200781 -0.865 0.395125
x10 -0.456824 0.171506 -2.664 0.013095 *
x11 -0.198532 0.182312 -1.089 0.286157
x12 0.167599 0.225407 0.744 0.463821
x13 -0.042958 0.158114 -0.272 0.788006
x14 -0.149825 0.157784 -0.950 0.351082
x15 0.044798 0.206143 0.217 0.829660
x16 -0.085366 0.179704 -0.475 0.638728
x17 0.409642 0.198006 2.069 0.048639 *
x18 -0.014995 0.168287 -0.089 0.929681
x19 0.310235 0.233058 1.331 0.194696
x20 -0.095293 0.177272 -0.538 0.595460
x21 -0.241792 0.201412 -1.200 0.240774
x22 -0.187829 0.178686 -1.051 0.302854
x23 -0.057653 0.150114 -0.384 0.704054
x24 0.015410 0.160248 0.096 0.924129
x25 0.045967 0.212807 0.216 0.830669
x26 -0.163131 0.206006 -0.792 0.435601
x27 0.298277 0.166657 1.790 0.085146 .
x28 -0.032929 0.198629 -0.166 0.869611
x29 0.096771 0.176270 0.549 0.587693
x30 -0.314588 0.224004 -1.404 0.172039
x31 -0.074336 0.200745 -0.370 0.714157
x32 -0.057588 0.194478 -0.296 0.769496
x33 -0.189475 0.174150 -1.088 0.286577
x34 0.088225 0.208928 0.422 0.676294
x35 -0.152155 0.183870 -0.828 0.415476
x36 -0.149815 0.217675 -0.688 0.497389
x37 -0.134680 0.185514 -0.726 0.474335
x38 0.075483 0.211845 0.356 0.724482
x39 0.135728 0.172039 0.789 0.437286
x40 0.255053 0.235204 1.084 0.288146
x41 -0.080387 0.206095 -0.390 0.699677
x42 0.132233 0.213797 0.618 0.541629
x43 0.159253 0.201160 0.792 0.435716
x44 0.057717 0.225031 0.256 0.799597
x45 0.246307 0.137357 1.793 0.084585 .
x46 0.150886 0.187217 0.806 0.427587
x47 -0.040377 0.178037 -0.227 0.822359
x48 -0.054146 0.246292 -0.220 0.827709
x49 -0.026741 0.197625 -0.135 0.893408
x50 -0.002309 0.196629 -0.012 0.990719
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.032 on 26 degrees of freedom
Multiple R-squared: 0.883, Adjusted R-squared: 0.6401
F-statistic: 3.635 on 54 and 26 DF, p-value: 0.0003225
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We reject 𝐻0: 𝛽𝑗 = 0 at 𝛼 = 0.05 for 3 of the spurious predictors.

So the Type I error rate was 3/50 = 0.06.

Now do backwards stepwise selection to throw some variables away.

Then see how many of the spurious predictors we find “significant”.
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stepX_out <- step(lmX_out, data = commpropX, trace = 0)
summary(stepX_out)

Call:
lm(formula = rent ~ age + optx + vac + sqft + x3 + x4 + x6 +

x9 + x10 + x11 + x14 + x17 + x19 + x21 + x22 + x27 + x30 +
x33 + x35 + x38 + x39 + x40 + x43 + x45, data = commpropX)

Residuals:
Min 1Q Median 3Q Max

-1.56212 -0.38254 0.00396 0.45158 1.45098

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.30833 0.45134 27.271 < 2e-16 ***
age -0.14311 0.01677 -8.535 1.03e-11 ***
optx 0.28698 0.04891 5.868 2.49e-07 ***
vac -1.20706 0.88517 -1.364 0.178134
sqft 0.07511 0.01105 6.800 7.41e-09 ***
x3 0.34486 0.10129 3.405 0.001231 **
x4 -0.15437 0.10145 -1.522 0.133739
x6 -0.19038 0.09232 -2.062 0.043839 *
x9 -0.22542 0.11113 -2.029 0.047268 *
x10 -0.38397 0.09581 -4.008 0.000183 ***
x11 -0.29839 0.10528 -2.834 0.006377 **
x14 -0.17005 0.09444 -1.801 0.077133 .
x17 0.41548 0.10696 3.885 0.000273 ***
x19 0.32996 0.11166 2.955 0.004567 **
x21 -0.15718 0.10393 -1.512 0.136084
x22 -0.15554 0.10417 -1.493 0.141020
x27 0.26847 0.08775 3.060 0.003398 **
x30 -0.31647 0.10519 -3.009 0.003927 **
x33 -0.15086 0.09853 -1.531 0.131348
x35 -0.20031 0.10194 -1.965 0.054391 .
x38 0.16086 0.10969 1.466 0.148108
x39 0.12000 0.09388 1.278 0.206457
x40 0.20019 0.10926 1.832 0.072230 .
x43 0.16494 0.10597 1.557 0.125213
x45 0.20619 0.08264 2.495 0.015574 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7825 on 56 degrees of freedom
Multiple R-squared: 0.8551, Adjusted R-squared: 0.7929
F-statistic: 13.76 on 24 and 56 DF, p-value: 1.043e-15
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Backwards stepwise selection keeps 20 of the 50 spurios predictors.

Among these 20, we reject 𝐻0: 𝛽𝑗 = 0 at 𝛼 = 0.05 for 10 of them.

So the post-selection Type I error rate was 10/20 = 0.5 😱.

WARNING: Selecting variables and then getting p-values in the selected

model often leads to astonishingly inflated Type I error rates.
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