
Making plots

Weʼll discover in using Python that you will need to import a library to do whatever the thing is that you want to do.
In this note the thing that we want to do is to make plots, so we will import a library called matplotlib , which has
this website: matplotlib.org. This is not the only plotting library for Python, but it seems to be “the hottest” right
now.

The above is the standard way of importing this library of functions. On the website for the library there are millions
of examples of how to make use of all the functionality of this package; to these I will add my own humble offering
here.

The first thing about matplotlib is that it plays well with NumPy, so letʼs import the NumPy library also with the
typical alias np :

Here is a demo of how to make a plot:

Plots, functions, and conditional programming

Karl Gregory
AUTHOR

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0,2*np.pi,361)
sinx = np.sin(x)
plt.plot(x,sinx)
plt.show()

 Python > Plots, functions, and conditional programming 

https://matplotlib.org/
https://gregorkb.github.io/compstat/Python_running.html
https://gregorkb.github.io/compstat/Python_plots_functions_cond.html

Here is a plot with a few more features, including a legend. Legends can be created in an automatic kind of way if a
label= is supplied for each feature added to the plot.

You can also spend some time setting up the axes and customizing the plotʼs appearance before you show the plot.
In the matplotlib tutorials, this seems to be the preferred way to do things. Here is how it works: You have to set up a
figure as well as a set of axes. Then you add things to the axes with ax. commands. When you do things this way, a
new figure is set up, so you donʼt need to worry about your plotting commands simply adding things to your
previous plot.

The code below also demonstrates how to set up a second vertical axis on the same horizontal axis.

generate some scatterplot data such that the y values are equal to a function plus noise
u = np.random.random(30)*2*np.pi
v = 0.8*np.sin(u) + 0.2*np.cos(u) + np.random.normal(0,1/3,u.size)

prepare to plot the true function
x = np.linspace(0,2*np.pi,361)
fx = 0.8*np.sin(x) + 0.2*np.cos(x)

plt.figure() # make a new empty figure (so new plots don't keep going on top of the previo
plt.plot(u,v,'bo',label = 'observations')
plt.plot(x,fx,label = 'true underlying function',color=(0.545,0,0,.3)) # can put an rgb tu
plt.xlabel("x")
plt.ylabel("response")
plt.title("Demo plot")
plt.legend()
plt.show()

fig, ax = plt.subplots(figsize= (10,5)) # set up figure and axes. You can here change the
ax.plot(u,v,'bo',label = 'Observations')
ax.plot(x,fx,label = 'True underlying function',linestyle="--",color=(0.545,0,0,.5))
ax.set_xlabel("x")

Using the latter approach of setting up a figure first allows one to create multi-plot figures. Each individual plot in a
figure is referred to as an axes, or a set of axes.

ax.set_ylabel("Response")
ax.set_title("Demo plot")
ax.legend() # gets placed automatically

ax2 = ax.twinx() # set up a second set of axes having the same hori
ax2.hist(u,color=(.545,0,0,.2),bins=10, label = "asdf") # add a histogram to the second pa
ax2.set_ylabel('Frequency of observations')
plt.show()

fig, (ax1, ax2) = plt.subplots(1,2,figsize = (10,4)) # put in a 1 by 2 grid of plots, name
ax1.plot(u,v,'bo',label = 'observations')
ax1.set_xlabel("x")
ax1.set_ylabel("response")
ax1.set_title("Demo plot")
ax1.legend() # gets placed automatically

ax2.plot(x,fx,'g',label = 'true underlying function')
ax2.set_xlabel("x")
ax2.set_ylabel("f(x)")
ax2.legend()
plt.show()

We can set up plots in a “mosaic” arrangement as follows:

fig, axs = plt.subplot_mosaic([['top_left','top_right'],
 ['bottom','bottom']],figsize=(10,8))

axs['top_left'].plot(u,v,'g+')
axs['top_right'].hist(u)
axs['bottom'].plot(x,fx,linewidth = 5)

fig.suptitle('Three amazing plots!',y=.99,fontsize = 20) # add an overall title. Set y= to
plt.show()

ftp.HB.to

Defining new functions

Here is the syntax for defining a simple, one-liner function:

0.8414709848078965

We must tell the function explicitly to return a value, or it will not return anything. If there is more than one line of
code, we indent the lines, as shown below (no curly braces like in R). When we stop indenting, Python knows that
the function definition has come to an end.

5.0

A function can be made to return more than one value. Just put every object to be returned in the return function.

def f(x): return(x*np.sin(x))

print(f(1))

def hyp(a,b):

 csq= a**2 + b**2
 c = np.sqrt(csq)

 return(c)

print(hyp(3,4))

EHE

1.0000000000000002
1.7320508075688772

We specify default values in Python just as we did in R:

Conditional programming

def eucl(r,th):

 x = r*np.cos(th)
 y = r*np.sin(th)

 return(x,y)

x, y = eucl(2,np.pi/3)

print(x)
print(y)

def logistic(x,a=0,b=1):

 l = a + x*b
 val = np.exp(l) / (1 + np.exp(l))

 return(val)

plt.rcParams['text.usetex'] = True # ask to use LaTex in plot labels

x = np.linspace(-4,4,200)
fx1 = logistic(x) # use default values for a and b
fx2 = logistic(x,a = -2, b = 3)
fig, ax = plt.subplots(figsize=(10,5))
ax.plot(x,fx1,label = '$a = 0$, $b = 1$')
ax.plot(x,fx2,label = '$a = -2$, $b = 3$')
ax.set_xlabel('x')
ax.set_ylabel('$f(x)$')
ax.text(-3,.8,"$f(x) = \\frac{e^{a + bx}}{1 + e^{a + bx}}$",fontsize = 16)
ax.legend()
plt.show()

a bx

flex
Feath

The logic of conditional programming is the same across all programming languages. One has only to learn new
syntax with each language. Here are some examples of conditional programs in Python:

[1][2]

The else if syntax in Python is a little different: Instead of typing “else if” you type elif :

def rolldice():

 r1 = np.random.choice(np.arange(1,7),1) # draw a number from 1 to 6
 r2 = np.random.choice(np.arange(1,7),1)

 roll = str(r1) + str(r2)
 if(r1 == r2):

 if(r1 == 1):

 print("Hooo-eee, snake-eyes!")

 else:

 print("Yowza, doubles!")

 print(roll)

rolldice()

def rolldice():

 r1 = np.random.choice(np.arange(1,7),1)
 r2 = np.random.choice(np.arange(1,7),1)

 roll = str(r1) + str(r2)
 if(r1 == r2):

 if(r1 == 1):

 print("Hooo-eee, snake-eyes!")

 elif(r1 == 6):

 print("Can't beat it!!!")

 else:

 print("Yowza, doubles!")

 elif((r1 + r2) <= 7):

 print("Ahh, sad rollin'.")

 elif((r1 + r2) > 10):

 print("Mighty fine!")

 else:

 print("Well now...")

 print(roll)

Yowza, doubles!
[5][5]

For what itʼs worth, there is a function called bool() which coerces its argument to a boolean value. It may come in
handy at some point:

True
False

As we did before in R, we can take advantage of the coercion of a logical value to a numerical value to simplify the
definition of piecewise defined functions. For example we can define the function

for as below:

Next we define a function to evaluate the bivariate standard normal density. Then we make a surface plot of the
function:

rolldice()

print(bool(1))
print(bool(0))

def softthresh(x,lam):
 return((x + lam) * (x < -lam) + (x - lam)*(x > lam))

x = np.linspace(-2,2,5)
lam = 1
fx = softthresh(x,lam)
fig, ax = plt.subplots(figsize = (10,5))
ax.plot(x,fx)
ax.axhline(0,linestyle="--",linewidth=.5)
plt.show()

def bivn(z1,z2,rho = 0): # make rho have by default the value 0

 r = 1 - rho**2
 a = 1/(2*np.pi*np.sqrt(r))

Practice

Practice writing code and reading code with the following exercises.

1. Let be a set of real numbers and denote by the same set of values sorted in
increasing order. The the quantile function of the empirical distribution of the set of points is given

 b = (z1**2 - 2*rho*z1*z2 + z2**2) / r
 val = a*np.exp(-b/2)

 return(val)

gs = 50 # size of the grid
z = np.linspace(-3,3,gs) # make the grid along one dimension
X, Y = np.meshgrid(z,z) # make a 2-dimensional grid out of one dimensional grids
Z = bivn(X,Y,rho=-0.5) # evaluate (quickly) the function at each point in the grid.

fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(projection='3d')
ax.plot_surface(X,Y,Z,cmap=plt.cm.YlGnBu_r) # cmap is for specifying a colormap
plt.show()

Write code

by

for , where is the floor function. Write a function which will compute the interquartile range
 according to the quantile function defined above for a set of values when

these are stored in a one-dimensional NumPy array. You may make use of the np.sort() function. You can
check your function against the output below:

1.72

2. Define and as below and plot them over on side-by-side panels in a single figure as
shown.

3. Obtain a Monte Carlo approximation using the hit-or-miss method to the integral

and make a plot like the one shown below:

x = np.array([1.29, 1.36, 0.3 , -1.17, -0.70, 0.43, 1.02, 1.02, 0.09, 1.48])
print(IQR(x))

4. Write a function to convert a set of Euclidean coordinates stored in NumPy arrays x and y to polar
coordinates via

as well as a function to convert a point given in Polar coordinates to Euclidean coordinates via

Moreover, write a function to rotate a set of points given as coordinates in the Euclidean plan (in some
NumPy vectors x and y) a number of degrees counter-clockwise; you can achieve this by converting the
points to polar coordinates and then adding to the value of the angle . Afterwards convert the points back to
Euclidean coordinates. Use your functions to make the plot below of the points created in this code chunk
rotated around the origin and plotted at every ten degrees.

x = np.linspace(0,1,21)
y = x**2

5. For , make a plot of the polar function defined by for . Evaluate the
radius over a grid of values and then convert the polar coordinates to Euclidean coordinates for
plotting. The plots should look like this:

Anticipate the output of the following code chunks:

1.

Read code

def star(p,s):

 th = np.linspace(np.pi/2,np.pi/2 + 2*np.pi*s,s*p+1)
 x = np.cos(th[::s])
 y = np.sin(th[::s])

 return x, y

x, y = star(5,2)

fig, ax = plt.subplots(figsize=(4,4))
ax.set_aspect('equal')
ax.axis('off')
ax.plot(x,y)
plt.show()

