Python > Plots, functions, and conditional programming

Plots, functions, and conditional programming

AUTHOR
Karl Gregory

Making plots

We’ll discover in using Python that you will need to import a library to do whatever the thing is that you want to do.
In this note the thing that we want to do is to make plots, so we will import a library called matplotlib, which has
this website: matplotlib.org. This is not the only plotting library for Python, but it seems to be “the hottest” right

now.
import matplotlib.pyplot as plt

The above is the standard way of importing this library of functions. On the website for the library there are millions
of examples of how to make use of all the functionality of this package; to these | will add my own humble offering

here.
The first thing about matplotlib isthatit plays well with NumPy, so let’s import the NumPy library also with the
typical alias np:

import numpy as np

Here is a demo of how to make a plot:

x = np.linspace(@,2*np.pi,361)
sinx = np.sin(x)
plt.plot(x,sinx)

plt.show()

1.00 A

0.75 -

0.50 -

0.25 -

0.00 -

—0.25 A

—0.50 -

—0.75 A

—1.00 A

https://matplotlib.org/
https://gregorkb.github.io/compstat/Python_running.html
https://gregorkb.github.io/compstat/Python_plots_functions_cond.html

Here is a plot with a few more features, including a legend. Legends can be created in an automatic kind of way if a

label= is supplied for each feature added to the plot.

generate some scatterplot data such that the y values are equal to a function plus noise

u = np.random. random(30)*2*xnp.pi
v = 0.8xnp.sin(u) + @.2*np.cos(u) + np.random.normal(@,1/3,u.size)

prepare to plot the true function
X = np.linspace(@,2*np.pi,361)
fx = 0.8%np.sin(x) + 0.2*np.cos(x)

plt.figure() # make a new empty figure (so new plots don't keep going on top of the previo
plt.plot(u,v, 'bo',label = 'observations')
plt.plot(x,fx,label = 'true underlying function',color=(0.545,0,0,.3)) # can put an rgb tu
plt.xlabel("x")
plt.ylabel("response")
plt.title("Demo plot")
plt.legend()
plt.show()
Demo plot
[] (] ® observations
P true underlying function
1.0 A ®
o
o
o
0.5 A ®

® o
g | e : .
o
2 00 *
O .

[° ®

(]
—0.5 - o
o
[]
[J
o [
-1.0 °
T T T T T T T
0 1 2 3 4 5 6

You can also spend some time setting up the axes and customizing the plot’s appearance before you show the plot.

In the matplotlib tutorials, this seems to be the preferred way to do things. Here is how it works: You have to set up a

figure as well as a set of axes. Then you add things to the axes with ax. commands. When you do things this way, a

new figure is set up, so you don’t need to worry about your plotting commands simply adding things to your

previous plot.

The code below also demonstrates how to set up a second vertical axis on the same horizontal axis.

fig, ax = plt.subplots(figsize= (10,5)) # set up figure and axes. You can here change the

ax.plot(u,v, 'bo',label = 'Observations')
ax.plot(x,fx,label = 'True underlying function', linestyle="—-
ax.set_xlabel("x")

", color=(0.545,0,0,.5))

ax.set_ylabel("Response")
ax.set_title("Demo plot")
ax.legend() # gets placed automatically

ax2 = ax.twinx() # set up a second set of axes having the same hori
ax2.hist(u,color=(.545,0,0,.2),bins=10, label = "asdf") # add a histogram to the second pa
ax2.set_ylabel('Frequency of observations')

plt.show()

Demo plot
° ° ® Observations r6
o —~==~ True underlying function
1.0 1 (]

————— ° o N
,’// \\\\ 5
. " e S
0.5 / [] N 4 g
/, N 2
[] AN 2
Y ' o® L e 8
c 7 A g
: . oy °©
s AN ’ F3'%
2 0.0 : ’ 2
g o .) 4 3
o o/ <
AY /, g
& \\ 4 [] L o
. (] o 2o
—0.5 A \\\ [] /,/ 1 ° N

. -
e - e F1
(Y []
-1.0 (]
T T T T) : ; 0
0 1 2 3 4 > 6
X

Using the latter approach of setting up a figure first allows one to create multi-plot figures. Each individual plot in a
figure is referred to as an axes, or a set of axes.

fig, (ax1, ax2) = plt.subplots(1,2,figsize = (10,4)) # put in a 1 by 2 grid of plots, name

ax1.
ax1l.
ax1l.
ax1.
ax1l.

ax2.
ax2.
ax2.
ax2.
plt.

plot(u,v, 'bo',label = 'observations')
set_xlabel("x")
set_ylabel("response')
set_title("Demo plot")

legend() # gets placed automatically

plot(x,fx,'g',label = 'true underlying function')
set_xlabel("x")

set_ylabel("f(x)")

legend()

show()

Demo plot

L ® ® observations 0.75 1 —— true underlying function
° .
1.0 o
[J
L 0.50 -
[J
0.5 1 L 0.25 A
o (¥} L]
2 ° L
S % X 0.00
o 0.0 =
v o [] °
° . ° —0.25 A
[J
—0.5 - L
o © -0.50 A
i []
1.0 °* —0.75 A
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

We can set up plots in a “mosaic” arrangement as follows:

fig, axs

plt.subplot_mosaic([['top_left','top_right'l,

['bottom', 'bottom']],figsize=(10,8))

axs|['top_left']l.plot(u,v, 'g+")
axs['top_right'l.hist(u)
axs['bottom'].plot(x, fx,linewidth = 5)

fig.suptitle('Three amazing plots!',y=.99, fontsize

plt.show()

20) # add an overall title. Set y= to

l

R

V!

Il gé“—ow

Ul

Three amazing plots!

+ +
1.0 *
01 +
oy
0.5 + *
g +
+ 4
0.0
+ + "
+ + +
+
_05 . + + +
+
-1.01 R
0 1 2 3 4 6

0.75 A

0.50 A

0.25 A

0.00 A

—0.251

—0.50 1

—0.75 1

Defining new functions

Here is the syntax for defining a simple, one-liner function:

def f(x): return(xxnp.sin(x))

print(f(1))

0.8414709848078965

We must tell the function explicitly to return a value, or it will not return anything. If there is morefthan one line of

code, we indent the lines, as shown below (no curly braces like in R). When we stop indenting, Py

the function definition has come to an end.

def hyp(a,b):

CcsQ= axkx2 + bkk2
¢ = np.sqrt(csq)

return(c)

print(hyp(3,4))

5.0

A function can be made to return more than one value. Just put every object to be returned in the return function.

hon knows that

[~

def eucl(r,th):

rknp.cos(th)
y = rxnp.sin(th)

return(x,y)
y o +

X, y = eucl(2,np.pi/3)

print(y)

1.0000000000000002 ' 4 e
1.7320508075688772

We specify default values in Python just as we did in R:

def logistic(x,a=0,b=1):

1=a + xxb
val = np.exp(l) / (1 + np.exp(1l))

return(val)
plt.rcParams['text.usetex'] = True # ask to use LaTex in plot labels

X = np.linspace(-4,4,200)

fx1 = logistic(x) # use default values for a and b

x2 logistic(x,a = -2, b = 3)

fig, ax = plt.subplots(figsize=(10,5))

ax.plot(x,fx1,label = '$a = 0%, $b = 13$')

ax.plot(x,fx2,label = '$a = -2%, $b = 33%')

ax.set_xlabel('x")

ax.set_ylabel('$f(x)$")

ax.text(-3,.8,"$f(x) = \\frac{e”{a + bx}}{1 + e~{a + bx}}$",fontsize = 16)
ax.legend()

L x

rint(x L’x.\ * e
p (x) J ('——__—:—:Zf

plt.show()
1.0 4 a=0b=1
a=-2b=3
o ea+bz
0.8 f(x)'—'1+a+m

0.6 1

f(@)

0.4

0.2

0.0

Conditional programming

The logic of conditional programming is the same across all programming languages. One has only to learn new
syntax with each language. Here are some examples of conditional programs in Python:

def rolldice():

rl = np.random.choice(np.arange(1,7),1) # draw a number from 1 to 6
r2 = np.random.choice(np.arange(1,7),1)

roll = str(rl) + str(r2)
if(rl ==1r2):

if(rl == 1):

print("Hooo-eee, snake-eyes!")
else:

print("Yowza, doubles!")

print(roll)

rolldice()

[1]1[2]
The else ifsyntax in Python is a little different: Instead of typing “else if” you type elif:
def rolldice():

np.random.choice(np.arange(1,7),1)
np.random.choice(np.arange(1,7),1)

rl
r2

roll = str(rl) + str(r2)
if(rl ==r2):

if(rl == 1):
print("Hooo-eee, snake-eyes!')
elif(rl == 6):
print("Can't beat it!!!")
else:
print("Yowza, doubles!")
elif((rl + r2) <= 7):
print("Ahh, sad rollin'.")
elif((rl + r2) > 10):
print("Mighty fine!")
else:
print("well now...")

print(roll)

rolldice()

Yowza, doubles!

[5115]

For what it’s worth, there is a function called bool() which coerces its argument to a boolean value. It may come in
handy at some point:

print(bool(1))
print(bool(0))

True
False

As we did before in R, we can take advantage of the coercion of a logical value to a numerical value to simplify the
definition of piecewise defined functions. For example we can define the function

(z+X, z<-—=A
S(z,\) =<0, A<z <A
T—A A<z

for A > 0 as below:

def softthresh(x,lam):
return((x + lam) *x (x < -lam) + (x — lam)x(x > lam))

X = np.linspace(-2,2,5)

lam = 1

fx = softthresh(x, lam)

fig, ax = plt.subplots(figsize = (10,5))
ax.plot(x, fx)

ax.axhline(@, linestyle="--", linewidth=.5)
plt.show()

1.00 A

0.75

0.50 1

0.25 1

0.00

—0.25 A

—0.50 1

—0.75 A

—1.00 A

-2.0 -1.5 -1.0 —0.5 0.0 0.5 1.0 1. 2.0

ot

Next we define a function to evaluate the bivariate standard normal density. Then we make a surface plot of the

function:
def bivn(zl,z2,rho = 0): # make rho have by default the value 0
r =1 - rhokx2
a = 1/(2*np.pikxnp.sqrt(r))

b = (z1xx2 — 2krho*zl*z2 + z2%x2) / r
val = axnp.exp(-b/2)

return(val)

gs = 50 # size of the grid

z = np.linspace(-3,3,g9s) # make the grid along one dimension

X, Y = np.meshgrid(z,z) # make a 2-dimensional grid out of one dimensional grids

Z = bivn(X,Y, rho=-0.5) # evaluate (quickly) the function at each point in the grid.

fig = plt.figure(figsize=(8,8))

ax = fig.add_subplot(projection='3d")
ax.plot_surface(X,Y,Z,cmap=plt.cm.YLGnBu_r) # cmap is for specifying a colormap
plt.show()

Practice

Practice writing code and reading code with the following exercises.

Write code

l.letzy,...,z, beasetofreal numbersand denote by z(;) < --- < 2, the same set of values sorted in
increasing order. The the quantile function of the empirical distribution of the set of points 1, . . ., is given

by
Qn(u) = T(|un])>

foru € (0, 1), where || is the floor function. Write a function which will compute the interquartile range
Qn(3/4) — Qn(1/4) according to the quantile function defined above for a set of values z1, . . ., ,, when
these are stored in a one-dimensional NumPy array. You may make use of the np.sort() function.You can
check your function against the output below:

X = np.array([1.29, 1.36, .3, -1.17, -0.70, ©0.43, 1.02, 1.02, 0.09, 1.48])
print(IQR(x))

1.72

2. Define g(u) and g'(u) as below and plot them over u € [0, 1] on side-by-side panels in a single figure as

shown.
(9/2)u?, 0<u<1/3
g(u) =< 9u—9u?—-3/2, 1/3<u<2/3
(9/2)(1 —w)?, 2/3<u<l.
9u, 0<u<1/3
gdu)=<9—18uy, 1/3<u<2/3
9(1—-w), 2/3<u<l
3_
0.7 1
2_
0.6
0.5 - 1
30.4- g 0
& =
0.3
—1 4
0.2 1
0.1 A _9 4
0.0 1 3
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 1.0

3. Obtain a Monte Carlo approximation using the hit-or-miss method to the integral

I /1 ~ 3(z+1)log((z+1)/2) e

1 log((z +1)/2+2)

and make a plot like the one shown below:

Hit-or-miss Monte Carlo approximation to integral

= 3(@+1)log((x+1)/2
fla) = =

fll f(x)dx ~ 0.589

T — T T T T T T T T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

x

4. Write a function to convert a set of Euclidean (z, y) coordinates stored in NumPy arrays x and y to polar
coordinates (7, 0) via

= VTP

tan"(y/z), z>0

0— m+tan"l(y/z), =<0
/2, z=0,y>0
—7/2, z=0,y<0

as well as a function to convert a point (r, 8) given in Polar coordinates to Euclidean coordinates (z, y) via

x =rcosf
y=rsiné.

Moreover, write a function to rotate a set of points given as (z, y) coordinates in the Euclidean plan (in some
NumPy vectors x and y)a number of degrees counter-clockwise; you can achieve this by converting the
points to polar coordinates and then adding to the value of the angle 6. Afterwards convert the points back to
Euclidean coordinates. Use your functions to make the plot below of the points created in this code chunk
rotated around the origin and plotted at every ten degrees.

np.linspace(0,1,21)
y = Xk%2

X
I}

5.Forj € {2,4, 6,8}, make a plot of the polar function defined by r = sin(é/j) for @ € [0, 4j). Evaluate the
radius r over a grid of f values and then convert the polar coordinates (r, 6) to Euclidean coordinates (z, y) for
plotting. The plots should look like this:

Read code

Anticipate the output of the following code chunks:

1.
def star(p,s):
th = np.linspace(np.pi/2,np.pi/2 + 2%np.pixs,sxp+1)

X = np.cos(th[::s])
y = np.sin(th[::s])

return x, y
X, y = star(5,2)

fig, ax = plt.subplots(figsize=(4,4))
ax.set_aspect('equal')

ax.axis('off")

ax.plot(x,y)

plt.show()

