For and while loops

for (index) in < list it index value)

AUTHOR
Karl Gregory

```
import numpy as np
import matplotlib.pyplot as plt
```

For loops

The logic of loops in Python is just the same as it was in R. We need a list of index values, and then we give a set of commands to execute as our index proceeds through the list of index values:

```
x = ["this", 1, "that", True]
for index in x:
    print(index)
```

this 1 that True

Often our index is a list of numbers, which we can make with the range function.

```
for i in range(6):
    print(i**2)
```

0 1 4

9 16 25

Here is something really cool: We can use a loop to create list!

```
dates = [s + " 1st" for s in ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct'
dates
```

```
['Jan 1st',
'Feb 1st',
'Mar 1st',
'Apr 1st',
'May 1st',
```

```
'Jun 1st',
'Jul 1st',
'Aug 1st',
'Sep 1st',
'Oct 1st',
'Nov 1st',
'Dec 1st']
```

Here we make a list of powers of 2.

```
[2**a for a in range(0,10,2)]
```

```
[1, 4, 16, 64, 256]
```

Here is another example of creating a list using a loop. Here we use the ord() function, which provides a number corresponding to a character string's Unicode name together with the chr() function, which prints the character corresponding to this number. We can make a list containing all the lower case letters like this:

```
letters = [chr(i) for i in range(ord('a'),ord('z')+1)]
letters
```

```
['a',
 'b',
 'c',
 'd',
 'e',
 'f',
 'g',
 'h',
 'i',
 'j',
 'k',
 'l',
 'm',
 'n',
 '0',
 'p',
 'q',
 'r',
 's',
 't',
 'u',
 Ίν',
 'w',
 'x',
```

'y', 'z'] In R we typically instruct our index to begin at 1, but in Python it is more natural to make it begin at 0 because if we want to access the first entry in a list or in a NumPy array, we do so using the index 0.

Let's write a loop to take the product of all the numbers in a NumPy array.

```
x = np.random.random(5)
val = 1
for i in range(x.size):
   val *= x[i] # short way of writing val = val * x[i]
print(val)
```

0.009506516272205374

In Python we can use the syntax x += y as a shorthand for x = x + y, and the same works for any of the aritmetic operators +, -, *, and /. This kind of shorthand notation is recognized in C, but not in R.

Just like in the definition of functions, if we want a for loop to execute multiple commands, we do not need to put them in curly braces; we just indent all the commands.

Compute the sample variance

Below we define a function which computes the sample variance

$$S_n^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X}_n)^2$$

of a NumPy array containing the values X_1, \ldots, X_n :

```
def svar(x):
    n = x.size
    m1 = 0
    m2 = 0
    for i in range(n):
        m1 += x[i]
        m2 += x[i]**2

    v = (m2 - m1**2/n)/(n - 1)
    return(v)

x = np.random.normal(loc = 0, scale = 1, size=100)
svar(x)
```

np.float64(1.0404074367332299)

Add several lines to a plot

The code below makes a plot of several gamma distribution pdfs. To evaluate the gamma pdf, we need to import the SciPy package: scipy.org.

```
import scipy.stats as stats

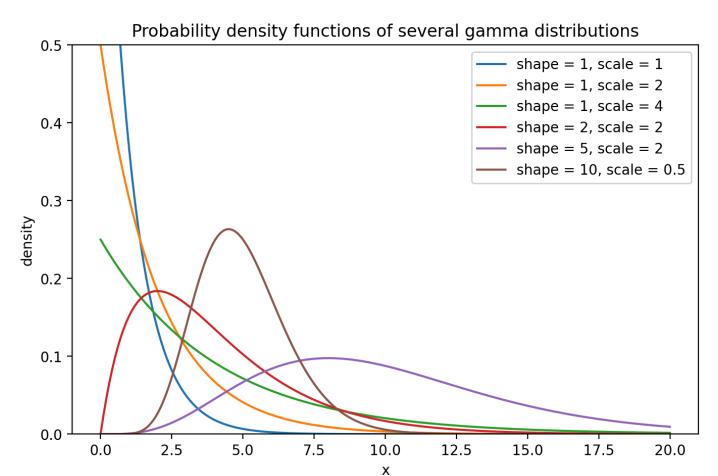
a = [1,1,1,2,5,10] # shape parameter values
b = [1,2,4,2,2,1/2] # scale parameter values
x = np.linspace(0,20,200)

fig, ax = plt.subplots(figsize = (8,5))
ax.set(ylim=(0,1/2))

for i in range(len(a)): # loop through the several parameter value combinations

fx = stats.gamma.pdf(x,a[i],scale=b[i]) # need a shape and a scale parameter
lab = "shape = " + str(a[i]) + ", scale = " + str(b[i])
ax.plot(x,fx,label=lab)

ax.set_title("Probability density functions of several gamma distributions")
ax.set_xlabel("x")
ax.set_ylabel("density")
ax.legend()
```



Make a grid of plots

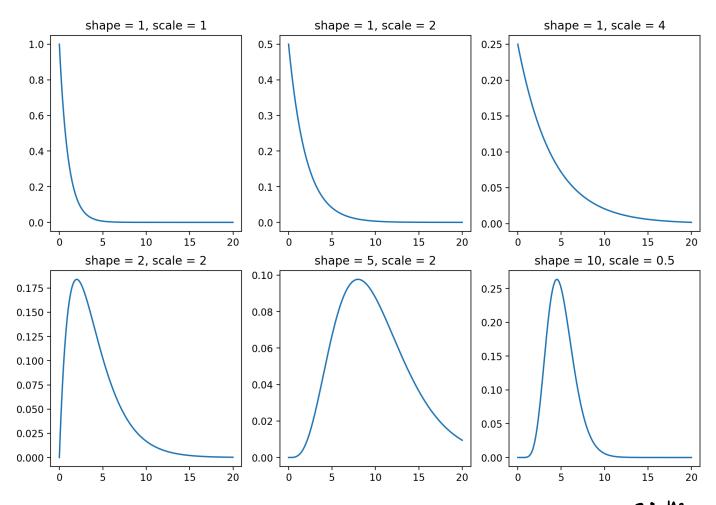
Suppose we wanted to plot all the same gamma pdfs, but not on the same set of axes. We can set up a figure with a grid of subplots, setting the number of rows and columns. Then the sets of axes can be accessed by indexing within square brackets. Check out the code below:

```
fig, axs = plt.subplots(2,3,figsize=(12,8))
k = 0
for i in range(0,2):
    for j in range(0,3):

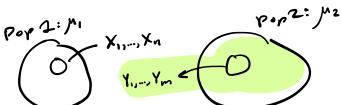
        fx = stats.gamma.pdf(x,a[k],scale=b[k]) # need a shape and a scale parameter
        axs[i,j].plot(x,fx)
        axs[i,j].set_title("shape = " + str(a[k]) + ", scale = " + str(b[k]))
        k += 1

fig.suptitle('Probability density functions of several gamma distributions')
plt.show()
```

Probability density functions of several gamma distributions



Compute Wilcoxon rank sum statistic



Ho: Mig M2 13 Hi: Miz M2.

If we observe a "control" sample X_1, \ldots, X_n and a "treatment" sample Y_1, \ldots, Y_m , the Wilcoxon Rank Sum test concludes a positive treatment effect (Y's tend to be greater than X's) if the statistic

$$W_{XY} = \sum_{i=1}^n \sum_{j=1}^m \mathbb{I}(X_i \leq Y_j)$$
 If $(Y_i \not = Y_j) = 0$ o.w.

exceeds a high enough threshold, where $\mathbb{I}(A)$ is equal to 1 if A is true and 0 if A is false. Let's write a double for loop to compute the value of W_{XY} :

```
def wilcx(X,Y):
     n = X.size
     m = Y.size
     val = 0
     for i in range(n):
         for j in range(m):
             val += X[i] <= Y[i]</pre>
     return(val)
                                           While (condition):
 n = 30
 m = 25
 X = np.random.normal(0,1,n)
 Y = np.random.normal(0,1,m)
 wilcx(X,Y)
np.int64(401)
While loops
```

The logic of while loops in Python is just the same as it was in R

Approximating the natural logarithm

As a first example, let's write a function which returns an approximation to $\log(z)$ for any z>0 given by a partial sum of the infinite series representation

$$\log(z) = 2\sum_{k=0}^{\infty} \frac{1}{2k+1} \left(\frac{z-1}{z+1}\right)^{2k+1},$$

where $\log(\cdot)$ denotes the natural logarithm. Let's set up the function so that it stops adding terms when the contribution of a new term is less than some tolerance level, and such that the function returns the number of terms added.

```
def lnapp(z,tol=1e-8):
    k = 0
    ln = 0
    conv = False
    while(not conv): # in Python we cannot negate a boolean with '!' as we can in R! We n

        trm = ((z-1)/(z+1))**(2*k+1) / (2*k+1)
        ln += trm
        k += 1

        conv = abs(trm) < tol

    ln = 2*ln

    return([ln,k])

z = 100
print(lnapp(z))
print(np.log(z))</pre>
```

```
[4.605169750339702, 302]
4.605170185988092
```

The function returns both the approximation to $\log(z)$ and the number of iterations required to to meet the convergence criterion.

Newton's method to find a reciprocal

Let's do a another example of Newton's method:

We can find the reciprocal 1/a of a positive real number a by finding the root of the equation

$$f(x) = a - 1/x.$$

Newton's method prescribes choosing an initial guess x_0 for the reciprocal of a and then making the updates

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)} = 2x_n - ax_n^2$$

until convergence. Let's write a function for finding the reciprocal of a number in this way (it turns out you have to choose an initial value satisfying $0 < x_0 < 2/a$ in order for the algorithm to converge. We will just choose the inital value to be close to zero, knowing that if a is large, we may need to choose a smaller initial value). This example can be found on page 352 of the Calculus book. Let's make the function so that it can find the reciprocal of a negative value.

```
def recip(a, tol = 1e-9):
    if(a < 0):</pre>
```

Define
$$f(x) = q - \frac{1}{x}$$
.

$$x_{n+1} = x_n - \underbrace{f(x_n)}_{f'(x_n+1)}$$

$$f'(x) : \frac{1}{x^2}$$

$$\chi_{n+1} = \chi_n - \frac{q - \frac{1}{\chi_n}}{1/\chi_n^2}$$

$$= x_n - x_n^2 \left(a - \frac{1}{x_n} \right)$$

$$\begin{bmatrix} = 2 \pi_n - \alpha \pi_n^2 \end{bmatrix}$$

```
sgn = -1
a = -a

else: sgn = 1

x = 0.01
conv = False
while(not conv):

x0 = x
    x = 2*x - a * x**2

conv = abs(x - x0) < tol

x = sgn * x

return(x)</pre>
```

```
print(recip(-6))
print(recip(0.1))
print(recip(14.5))
```

```
-0.166666666666666
```

- 9.9999999999998
- 0.06896551724137931

Newton's method for minimizing a function

If a function is convex, we can find where it is minimized by taking its first derivative and setting this equal to zero. If we cannot find a closed-form expression for the root of the derivative, we can use Newton's method. If the function is f and its first and second derivatives are denoted f' and f'', then we can, using Newton's method, find the minimizer of f with the updates

$$x_{n+1}=x_n-rac{f'(x_n)}{f''(x_n)},$$

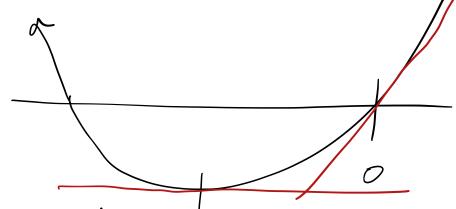
starting from an initial guess x_0 , as this algorithm will lead to the value of x such that f'(x) = 0. Note that the same algorithm can be used to *maximize* a *concave* function.

As an example, the code below finds the minimizer of the function $f(x)=x^2+\sin(x)$, using $f'(x)=2x+\cos(x)$ and $f''(x)=x-\sin(x)$.

```
x = 0 # initial guess
tol = 1e-6 # convergence tolerance
conv = False
while(not conv):
    x0 = x
    x = x - (2*x + np.cos(x))/(2 - np.sin(x))
```

Want to minimize:

$$f(x) = x^2 + \sin x$$

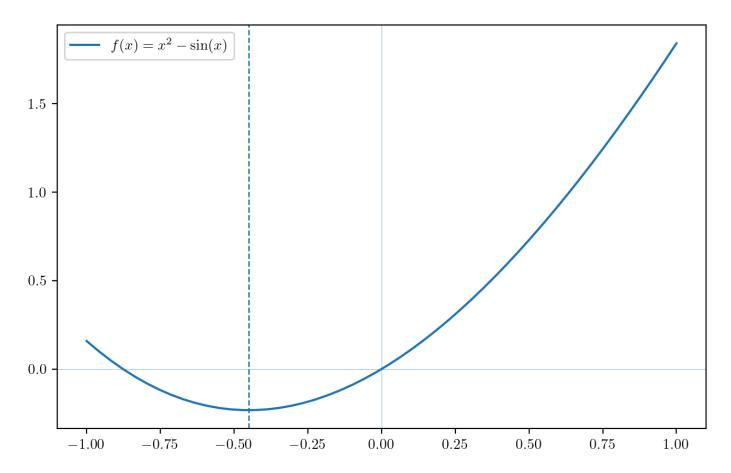


$$\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f''(\chi_n)} = \chi_n - \frac{2\chi_n + \cos \chi_n}{2 - \sin \chi_n}$$

```
conv = abs(x - x0) < tol

plt.rcParams['text.usetex'] = True # ask to use LaTex in plot labels

t = np.linspace(-1,1,50)
ft = t**2 + np.sin(t)
fig, ax = plt.subplots(figsize=(8,5))
ax.plot(t,ft,label="$f(x) = x^2 - \\sin(x)$")
ax.axvline(x,linestyle="--",linewidth = 1)
ax.axvline(0,linewidth = .2)
ax.axhline(0,linewidth = .2)
ax.legend()</pre>
```



Computing a maximum likelihood estimator

If we observe a random sample X_1,\ldots,X_n from a probability distribution with pmf or pdf $f(\cdot,\theta)$ which depends on a parameter $\theta\in\Theta\subset\mathbb{R}^p$, the maximum likelihood estimator of θ is defined as the maximizer over Θ of the likelihood function, which is given by

$$\mathcal{L}_n(heta) = \prod_{i=1}^n f(X_i, heta).$$

The maximum likelihood estimator can be thought of as the value of the parameter which gives the greatest probability to the data observed.

We can often use calculus methods to find the maximizer of the likelihood function; first, though, we usually transform the likelihood function into what we call the log-likelihood function by taking the natural log. This operation converts the product into a sum, on which it is easier to take derivatives. So, we define the log-likelihood as

$$\ell_n(heta) = \log \mathcal{L}_n(heta) = \sum_{i=1}^n \log f(X_i, heta),$$

Recall from your calculus classes that the minimizer of a function (in particular a convex function) can be found by setting the first derivative of the function equal to zero. Define the gradient $\nabla \ell_n(\theta)$ of the log-likelihood as the vector of partial derivatives of $\ell_n(\theta)$ taken with respect to the individual parameters $\theta_1, \ldots, \theta_p$ in θ . That is, set

$$abla \ell_n(heta) = egin{bmatrix} rac{\partial}{\partial heta_1 \ell_n(heta)} \ dots \ rac{\partial}{\partial heta_2 \ell_n(heta)} \end{bmatrix}$$

This is often called the *score function*. Then we can obtain an expression for the maximum likelihood estimator by solving the equation

$$\nabla \ell_n(\theta) = 0.$$

where this is a system of p equations, where p is the number of parameters in θ .

It is often the case that the solution to the previous equation or system of equation does not admit a closed-form expression; that is, rather than computing it with a formula, one must seek it with an algorithm. Newton's algorithm again shines: Define the matrix of 2nd-order partial derivatives of $\ell_n(\theta)$ taken with respect to θ_1,\ldots,θ_p as

$$\nabla^2 \ell_n(\theta) = \begin{bmatrix} \frac{\partial^2}{\partial \theta_1 \partial \theta_1} \ell_n(\theta) & \dots & \frac{\partial^2}{\partial \theta_1 \partial \theta_p} \ell_n(\theta) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial \theta_p \partial \theta_1} \ell_n(\theta) & \dots & \frac{\partial^2}{\partial \theta_p \partial \theta_p} \ell_n(\theta) \end{bmatrix}.$$

The matrix of second-order partial derivatives of a function is often called the *Hessian* of the function. From here, Newton's method prescribes the updates

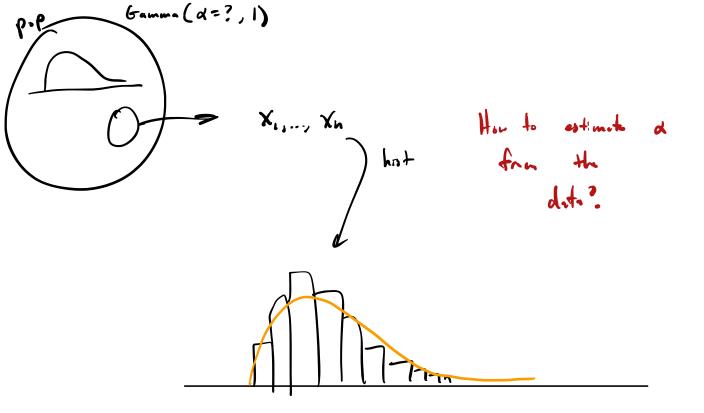
$$\theta_{n+1} = \theta_n - [\nabla^2 \ell_n(\theta_n)]^{-1} \nabla \ell_n(\theta)$$

after initialization of θ_0 at some arbitary starting point.

Note that if θ contains only a single parameter (that is if θ is a scalar and not a vector), the gradient and the Hessian simplify such that $\nabla \ell_n(\theta) = \ell_n'(\theta)$ and $\nabla^2 \ell_n(\theta) = \ell_n''(\theta)$, so that the Newton update may be written as

$$heta_{n+1} = heta_n - rac{\ell_n'(heta_n)}{\ell_n''(heta_n)},$$

where $\ell_n'(\theta)$ and $\ell_n''(\theta)$ are the first- and second- order derivatives of the log-likelihood, respectively.



Gamma shape parameter

Suppose X_1, \ldots, X_n are a random sample from the $\overline{\mathrm{Gamma}(\alpha, 1)}$ distribution, which has pdf given by

$$f(x,lpha)=rac{1}{\Gamma(lpha)}x^{lpha-1}e^{-x},\quad x>0,$$

where $\Gamma(t)=\int_0^\infty x^{t-1}e^{-x}$ is the gamma function. The parameter α is called the shape parameter; usually the gamma distribution also has a scale parameter β , but this gamma distribution has the scale parameter set equal to 1, so we will not have to estimate it. The likelihood function is given by

$$\mathcal{L}_n(lpha) = \prod_{i=1}^n rac{1}{\Gamma(lpha)} X_i^{lpha-1} e^{-X_i} = \Gamma(lpha)^{-n} \prod_{i=1}^n X_i^{lpha-1} \exp(-\sum_{i=1}^n X_i),$$

and the log-likelihood is given by

$$oxed{\ell_n(lpha) = -n\log\Gamma(lpha) + (lpha-1)\sum_{i=1}^n\log X_i + \sum_{i=1}^n X_i}.$$

The score function is the first derivative of the log-likelihood with respect to α , which is given by

$$abla \ell \left(lpha
ight) = -n rac{\Gamma'(lpha)}{\Gamma(lpha)} + \sum_{i=1}^n \log X_i = -n \psi(lpha) + \sum_{i=1}^n \log X_i,$$

where $\Gamma'(\cdot)$ is the first derivative of the gamma function and $\psi(\cdot) = \Gamma'(\cdot)/\Gamma(\cdot)$ is called the *digamma function*. The Hessian is given by

where $\psi'(\cdot)$ is the derivative of $\psi(\cdot)$ and is called the *trigamma function*. The Newton's met

where $\psi'(\cdot)$ is the derivative of $\psi(\cdot)$ and is called the *trigamma function*. The Newton's method update for seeking the maximum likelihood estimator for α can thus be written

$$lpha_{n+1} = lpha_n - \left[rac{\psi(lpha_n)}{\phi} - rac{n^{-1} \sum_{i=1}^n \log X_i}{/\psi'(lpha_n)},
ight.$$

after initializing α_0 at some starting value.

The code below defines a function for seeking the maximum likelihood estimator with Newton's algorithm. In order to evaluate the digamma and trigamma functions, we import a function called polygamma from a library called scipy.special. Rather than importing that entire library, we import only the needed function:

```
from scipy.special import polygamma # to compute the digamma and trigamma functions!

def gamshape(X,tol=1e-6): # function to compute the maximum likelihood estimator of alpha
    a = 1
    conv = False
    while(not conv):
        a0 = a
        a = a - (polygamma(0,a) - np.mean(np.log(X))) / polygamma(1,a)
        conv = abs(a - a0) < tol</pre>
```

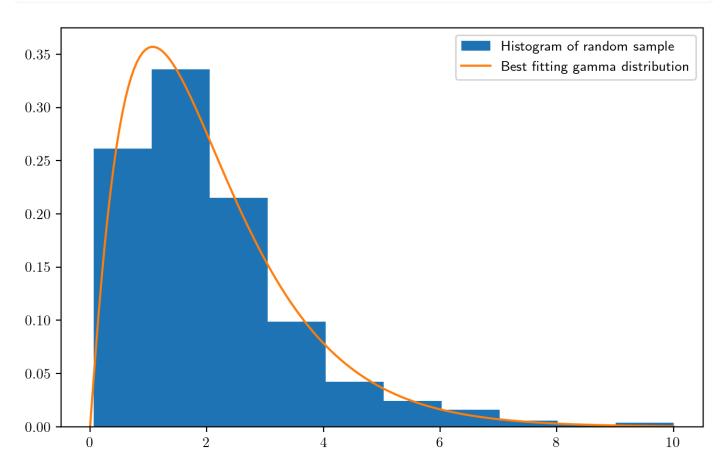
```
return(a)

# demonstrate by generating a random sample from the Gamma(a,1) distribution and then est
n = 500
a_true = 2
X = np.random.gamma(shape = a_true,scale = 1, size=n)

ahat = gamshape(X)
x = np.linspace(0,10,200)
fxhat = stats.gamma.pdf(x,a=ahat,scale = 1) # best-fitting gamma distribution

fig, ax = plt.subplots(figsize=(8,5))

ax.hist(X,density = True,label = "Histogram of random sample")
ax.plot(x,fxhat,label="Best fitting gamma distribution")
ax.legend()
```



Practice

Practice writing code and reading code with the following exercises.

Write code

1. Create the list shown below with one line of code.

['Level 1', 'Level 3', 'Level 5', 'Level 7', 'Level 9']

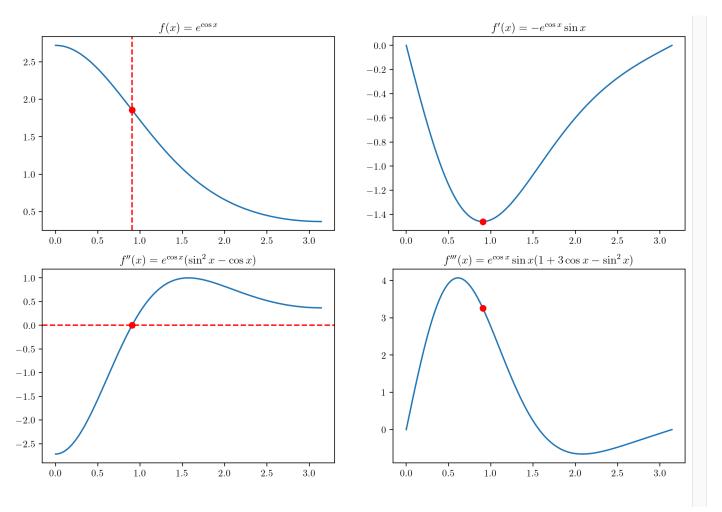
- 2. Write a function in Python called to sort the entries of a one-dimensional NumPy array. Write the function so that it sorts the entries in increasing order by default, but allows the user to specify that the entries be sorted in decreasing order if desired.
- 3. Consider the function $f(x)=e^{\cos x}$ over the interval $x\in[0,\pi]$. The inflection point of a function is the point at which its slope stops decreasing and begins increasing (or stops increasing and begins decreasing, as the case may be). One may find the inflection point by finding where the second derivative (the slope of the slope) is equal to zero. The derivatives of this function are

$$f'(x) = -e^{\cos x} \sin x \ f''(x) = e^{\cos x} (\sin^2 x - \cos x) \ f'''(x) = e^{\cos x} \sin x (1 + 3\cos x - \sin^2 x).$$

Write an algorithm which finds the inflection point of the function f over the interval $[0,\pi]$ using the Newton updates

$$x_{n+1} = x_n - rac{f''(x)}{f'''(x_n)},$$

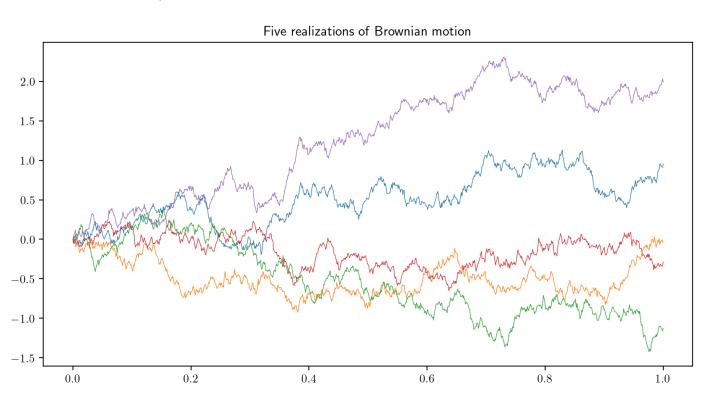
starting from some initial guess x_0 . The above functions are plotting below with the inflection point indicated.



4. A Brownian motion is a random function B(t) on the interval $t \in [0,1]$ satisfying certain properties. We can generate and plot an approximate, discretized realization of $B(t), t \in [0,1]$, by generating, for some large N, independent random variables Z_1, \ldots, Z_N from the standard normal distribution and plotting the points $(t_i, B_i), i = 0, \ldots, N$, where $(t_0, B_0) = (0, 0)$ and

$$t_i=i/N, \quad B_i=rac{1}{\sqrt{N}}\sum_{j=1}^i Z_j$$

for $i=1,\ldots,N$. Write a loop which plots five realizations of Brownian motion on a single plot. Tip: Try making use of the <code>np.cumsum</code> function. The plot should resemble the one below (these approximations are based on N=1000):

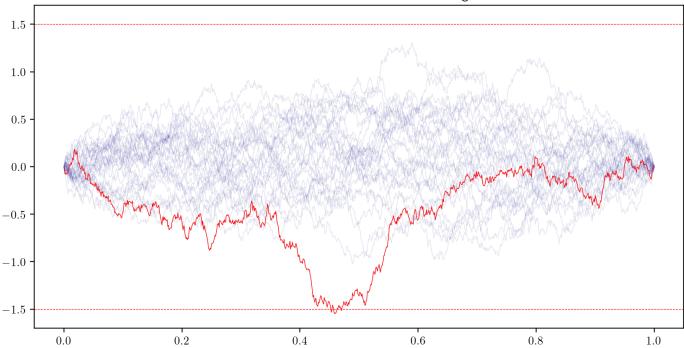


5. A Brownian bridge R(t) is a random function on $t \in [0,1]$ constructed from a Brownian motion B(t) such that R(t) = B(t) - tB(1). The Brownian bridge always "begins and ends" at 0. An approximate, discretized realization of a Brownian bridge can be visualized by plotting the points (t_i,R_i) , $i=0,\ldots,N$, where

$$R_i = B_i - t_i B_N,$$

with t_i and B_i defined as in the previous exercise, for $i=0,\ldots,N$. Generate and plot realizations of a Brownian bridge until you obtain one with maximum distance from zero exceeding the value 1.5. Plot the realizations as below.

Several realizations of a Brownian bridge



Read code

Anticipate the output of the following code chunks:

1. This code gives the representation of an integer on a <u>soroban</u>. It returns an array with a column for each digit in the number, where each column gives the number of *heaven beads* and the number of *earth beads* in the soroban representation of the digit. Predict the output of the code.

```
def sb(x):
    x = int(x)
    xs = str(x)
    n = len(xs)
    sb = np.zeros(n*2).reshape((2,n))

for i in range(0,n):
    d = int(xs[i])

    if(d >= 5):
        h = 1
        e = d - 5

else:
    h = 0
        e = d
```

```
sb[0,i] = h
sb[1,i] = e

return sb
sb(348529)
```