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import numpy as np
import matplotlib.pyplot as plt

For loops

The logic of loops in Python is just the same as it was in R. We need a list of index values, and then we give a set of
commands to execute as our index proceeds through the list of index values:

x = ["this", 1, "that", Truel]
for index in x:
print(index)

this
1

that
True

Often ourindex is a list of numbers, which we can make with the range function.

for i in range(6):
print(ix=x2)

Here is something really cool: We can use a loop to create list!

dates = [s + " 1st" for s in ['Jan','Feb', 'Mar', 'Apr', 'May', 'Jun','Jul', 'Aug', 'Sep', 'Oct"’
dates

['Jan 1st', \

'Feb 1st', '9'1 5 ,

'Mar 1st', (0‘11 '}C , .
'"Apr 1st', (q7-]

'May 1st',
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'Jun 1st',
'Jul 1st',
'Aug 1st',
'Sep 1st',
'Oct 1st',
'Nov 1st',
'Dec 1st'l]

Here we make a list of powers of 2.

[2xxa for a in range(0,10,2)]

[1, 4, 16, 64, 256]

Here is another example of creating a list using a loop. Here we use the ord() function, which provides a number
corresponding to a character string’s Unicode name together with the chr() function, which prints the character
corresponding to this number. We can make a list containing all the lower case letters like this:

letters = [chr(i) for i in range(ord('a'),ord('z"')+1)]
letters

['a',
b,
et
g,
et
e



In R we typically instruct our index to begin at 1, but in Python it is more natural to make it begin at 0 because if we
want to access the first entry in a list or in a NumPy array, we do so using the index 0.

Let’s write a loop to take the product of all the numbers in a NumPy array.

X = np.random.random(5)
val = 1
for i in range(x.size):
val x= x[i]  # short way of writing val = val % x[i]

print(val)

0.009506516272205374

In Python we can use the syntax x += y asashorthand for x = x + y, and the same works for any of the
aritmetic operators +, —, *,and /. This kind of shorthand notation is recognized in C, but not in R.

Just like in the definition of functions, if we want a for loop to execute multiple commands, we do not need to put
them in curly braces; we just indent all the commands.

Compute the sample variance

Below we define a function which computes the sample variance
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of a NumPy array containing the values X, ..., X,;:

def svar(x):

n = X.size

ml =0

m2 =0

for i in range(n):
ml += x[i]

m2 += x[i]**2

v = (m2 - mlxx2/n)/(n - 1)
return(v)

X = np.random.normal(loc = @, scale = 1,size=100)
svar(x)

np.float64(1.0404074367332299)

Add several lines to a plot



The code below makes a plot of several gamma distribution pdfs. To evaluate the gamma pdf, we need to import
the SciPy package: scipy.org.

import scipy.stats as stats

a=[1,1,1,2,5,10] # shape parameter values
[1,2,4,2,2,1/2] # scale parameter values
np.linspace(0,20,200)

fig, ax = plt.subplots(figsize = (8,5))
ax.set(ylim=(0,1/2))

for i in range(len(a)): # loop through the several parameter value combinations

fx = stats.gamma.pdf(x,ali]l,scale=b[i]) # need a shape and a scale parameter
lab = "shape = " + str(al[i]) + ", scale =" + str(b[il)
ax.plot(x, fx, label=1ab)

ax.set_title("Probability density functions of several gamma distributions")
ax.set_xlabel("x")

ax.set_ylabel("density")

ax.legend()
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Make a grid of plots

Suppose we wanted to plot all the same gamma pdfs, but not on the same set of axes. We can set up a figure with a

grid of subplots, setting the number of rows and columns. Then the sets of axes can be accessed by indexing within

square brackets. Check out the code below:

fig, axs = plt.subplots(2,3,figsize=(12,8))
k =20
for i in range(0,2):

for j in range(0,3):

fx = stats.gamma.pdf(x,alk],scale=b[k]) # need a shape and a scale parameter

axs[i,jl.plot(x,fx)

axs[i,jl.set_title("shape = " + str(alk]) + ", scale = " + str(bl[k]))

k += 1

fig.suptitle('Probability density functions of several gamma distributions')

plt.show()
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If we observe a “control” sample X1, ..., X, and a “treatment” sample Y7, . . ., Yy, the Wilcoxon Rank Sum test
concludes a positive treatment effect (Y’s tend to be greater than Xs) if the statistic 4 ;‘ﬁ X.-£¥.
L 4
0 m T (xe¥)=
Wxy = ZZH(XZ' <Y)) 0 o,
i=1 j=1

exceeds a high enough threshold, where I( A) is equal to 1 if A is true and 0 if A is false. Let’s write a double for
loop to compute the value of Wxy:

def wilcx(X,Y):

n = X.size
m = Y.size
val = 0

for i in range(n):
for j in range(m):

val += X[i] <= Y[j]

return(val)

- 30 \\l‘\?lt C ‘,gno(:'"lon .

= 25
np.random.normal(@,1,n)
= np.random.normal(@,1,m)
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wilex(X,Y)

np.int64(401)

While loops

The logic of while loops in Python is just tl{e same as it

Approximating the natural logarithm

As a first example, let’s write a function which returns an approximation to log(z) for any z > 0 given by a partial
sum of the infinite series representation

> 1 2 — 1\ 2k+1
log(z):2kz; 2k+1(z+1) ’

where log(+) denotes the natural logarithm. Let’s set up the function so that it stops adding terms when the
contribution of a new term is less than some tolerance level, and such that the function returns the number of
terms added.



def lnapp(z,tol=1e-8):
k=20
n=20

conv = False
while(not conv): # in Python we cannot negate a boolean with '!' as we can in R! We n

trm = ((z-1)/(z+1) )s*x(2%xk+1) / (2%k+1)
n += trm
k += 1
conv = abs(trm) < tol
1ln = 2x1n
return([ln,k])
z = 100

print(lnapp(z))
print(np.log(z))

[4.605169750339702, 302]
4.605170185988092

The function returns both the approximation to log(z) and the number of iterations required to to meet the
convergence criterion.

Newton’s method to find a reciprocal

Let’s do a another example of Newton’s method:

We can find the reciprocal 1 /a of a positive real number a by finding the root of the equation

flz)=a—1/z.
Newton’s method prescribes choosing an initial guess x¢ for the reciprocal of a and then making the updates
x
fzn) ::2mn——ami

ITnt+l = Tn — f’(m )
n

until convergence. Let’s write a function for finding the reciprocal of a number in this way (it turns out you have to
choose an initial value satisfying 0 < 2y < 2/a in order for the algorithm to converge. We will just choose the

inital value to be close to zero, knowing that if a is large, we may need to choose a smaller initial value). This
example can be found on page 352 of the Calculus book. Let’s make the function so that it can find the reciprocal
of a negative value.

def recip(a,tol = 1e-9):

if(a < 0):
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else: sgn =1

X = 0.01
conv = False
while(not conv):

X0 = X
X = 2%X — a k Xkk2

conv = abs(x - x0) < tol
X = sgn * X

return(x)

print(recip(-6))
print(recip(0.1))
print(recip(14.5))

-0.16666666666666669
9.999999999999998
0.06896551724137931

Newton’s method for minimizing a function

If a function is convex, we can find where it is minimized by taking its first derivative and setting this equal to zero.
If we cannot find a closed-form expression for the root of the derivative, we can use Newton’s method. If the
function is f and its first and second derivatives are denoted f’ and f”, then we can, using Newton’s method, find

the minimizer of f with the updates

f'(zn)
]c//(mn) ’

starting from an initial guess o, as this algorithm will lead to the value of z such that f'(x) = 0. Note that the

same algorithm can be used to maximize a concave function.

Tn+l = Tn —

As an example, the code below finds the minimizer of the function f(z) = 2 + sin(z), using
f'(z) = 2z + cos(z) and f"(z) = = — sin(z).

X = @ # initial guess
tol = 1le-6 # convergence tolerance
conv = False
while(not conv):
X0 = Xx
X = X — (2%x + np.cos(x))/(2 - np.sin(x))
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conv = abs(x - x0) < tol

plt.rcParams['text.usetex'] = True # ask to use LaTex in plot labels

t = np.linspace(-1,1,50)

ft = t*xx2 + np.sin(t)

fig, ax = plt.subplots(figsize=(8,5))
ax.plot(t,ft,label="$f(x) = x*2 = \\sin(x)$")
ax.axvline(x, linestyle="--",linewidth = 1)
ax.axvline(0, linewidth .2)

ax.axhline(0, linewidth .2)

ax. legend()

—— f(z) = 2% —sin(x)

1.0

0.0

T T T T T T T T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Computing a maximum likelihood estimator

If we observe a random sample X7, ..., X, from a probability distribution with pmf or pdf f(+, §) which depends
on a parameter € ©® C RP, the maximum likelihood estimator of @ is defined as the maximizer over © of the
likelihood function, which is given by

L,(0) = ﬁf(X,-,G).

The maximum likelihood estimator can be thought of as the value of the parameter which gives the greatest
probability to the data observed.



We can often use calculus methods to find the maximizer of the likelihood function; first, though, we usually
transform the likelihood function into what we call the log-likelihood function by taking the natural log. This
operation converts the product into a sum, on which it is easier to take derivatives. So, we define the log-likelihood
as

En(e) = log‘cn(e) = zn:log f(Xla 0))
i=1

Recall from your calculus classes that the minimizer of a function (in particular a convex function) can be found by
setting the first derivative of the function equal to zero. Define the gradient V£, (6) of the log-likelihood as the

vector of partial derivatives of £,,(6) taken with respect to the individual parameters 01, . . ., 6, in . That is, set
0
9614, (6)
Ve, (0) =
__0
80,0 (0)

This is often called the score function. Then we can obtain an expression for the maximum likelihood estimator by
solving the equation

V¢,(0) = 0.
where this is a system of p equations, where p is the number of parameters in 6.

It is often the case that the solution to the previous equation or system of equation does not admit a closed-form
expression; that is, rather than computing it with a formula, one must seek it with an algorithm. Newton’s

algorithm again shines: Define the matrix of 2nd-order partial derivatives of £,,(6) taken with respectto 04, ..., 6,
as
9?2 9
96100, £,(0) ... 96:00, £,(0)
V20,(0) =
92 92
00,00, 6, (0) ... 0,00, £,(0)

The matrix of second-order partial derivatives of a function is often called the Hessian of the function. From here,
Newton’s method prescribes the updates

Oni1 = On — [V(0,)] 1 VLL(0)
after initialization of 8¢ at some arbitary starting point.

Note that if @ contains only a single parameter (that is if @ is a scalar and not a vector), the gradient and the Hession
simplify such that V£,,(8) = £, (6) and V2£,,(8) = £!(9), so that the Newton update may be written as

£,,(05)
€(6n)

9n+1 = an -

where £, (6) and £/ (6) are the first- and second- order derivatives of the log-likelihood, respectively.
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Gamma shape parameter

o

Suppose X1, . .., X, are arandom sample from the|Gamma(e, 1) distribution, which has pdf given by
- e
1 a-1_—=z
= —=— >0 ;
l&(m7 a) F(a) z € ) x bl
where I'(¢ fo ¥ is the gamma function. The parameter « is called the shape parameter; usually the

gamma dlstrlbutlon also has a scale parameter (3, but this gamma distribution has the scale parameter set equal to
1, so we will not have to estimate it. The likelihood function is given by

lcnm) -11 r—a)*’éjS‘ Do) [ xe exp( Z X)),
\

and the log-likelihood is given by

(_}L )= -—nlogl(a) 4+ (a —1) ZlogX ~|—Z

The score function is the first derivative of the log-likelihood with respect to a, which is given by

where I'(+) is the first derivative of the gamma function and ¥(-) = I'(+) /T'(-) is called the digamma function.
The Hessian is given by

where ' (-) is the derivative of 1(-) and is called the trigamma funct/on The Newton’s method update for seeking
the maximum likelihood estlmatorfor o can thus be writt I“""" ‘t" Y et

Qpp1 = Qp — an 1 1ZlogX /’(/) an z
’ i=1 i

after initializing ap at some startmgvatoe:

The code below defines a function for seeking the maximum likelihood estimator with Newton’s algorithm. In
order to evaluate the digamma and trigamma functions, we import a function called polygamma from a library
called scipy.special. Ratherthanimporting that entire library, we import only the needed function:

from scipy.special import polygamma # to compute the digamma and trigamma functions!

def gamshape(X,tol=1e-6): # function to compute the maximum likelihood estimator of alpha
a=1
conv = False
while(not conv):
a0 =
a =a - (polygamma(@,a) - np.mean(np.log(X))) / polygamma(1,a)
conv = abs(a - a@) < tol



return(a)

# demonstrate by generating a random sample from the Gamma(a,1l) distribution and then est
n = 500

a_true = 2

X = np.random.gamma(shape = a_true,scale = 1, size=n)

ahat = gamshape(X)
X = np.linspace(0,10,200)
fxhat = stats.gamma.pdf(x,a=ahat,scale = 1) # best-fitting gamma distribution

fig, ax = plt.subplots(figsize=(8,5))
ax.hist(X,density = True, label = "Histogram of random sample'")

ax.plot(x, fxhat, label="Best fitting gamma distribution")
ax. legend()
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Best fitting gamma distribution
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Practice

Practice writing code and reading code with the following exercises.

Write code



1. Create the list shown below with one line of code.
['Level 1', 'Level 3', 'Level 5', 'Level 7', 'Level 9']

2. Write a function in Python called to sort the entries of a one-dimensional NumPy array. Write the function so
that it sorts the entries in increasing order by default, but allows the user to specify that the entries be sorted
in decreasing order if desired.

3. Consider the function f(x) = e*? over the interval z € [0, 7. The inflection point of a function is the point
at which its slope stops decreasing and begins increasing (or stops increasing and begins decreasing, as the
case may be). One may find the inflection point by finding where the second derivative (the slope of the slope)
is equal to zero. The derivatives of this function are

f'(z) = —e“*sinz
f"(z) 2 — cos )

f"(x) = e“%sinz(1+ 3cosz — sin’ z).

€“®*(sin

Write an algorithm which finds the inflection point of the function f over the interval [0, 7] using the Newton
updates

/()

Lpt1 — L —

f”,(xn) )
starting from some initial guess xg. The above functions are plotting below with the inflection point indicated.

f(m) — ecosz f/(x) — _ecoszsinx
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4. A Brownian motion is a random function B(t) on the interval ¢ € [0, 1] satisfying certain properties. We can
generate and plot an approximate, discretized realization of B(t),t € [0, 1], by generating, for some large N,
independent random variables Z1, . . ., Zn from the standard normal distribution and plotting the points
(tiy Bi),i =0,...,N,where (to, By) = (0,0) and

1 i

ti:i/N, B; =
\/N =1

Z;

forte = 1,..., N.Write a loop which plots five realizations of Brownian motion on a single plot. Tip: Try
making use of the np.cumsum function. The plot should resemble the one below (these approximations are
based on N = 1000):

Five realizations of Brownian motion
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5. A Brownian bridge R(t) is a random function on ¢ € [0, 1] constructed from a Brownian motion B(t) such
that R(t) = B(t) — tB(1). The Brownian bridge always “begins and ends” at 0. An approximate, discretized
realization of a Brownian bridge can be visualized by plotting the points (¢;, R;),7 = 0, ..., N, where

R; = B; —t;Bn,

with t; and B; defined as in the previous exercise, fori = 0, ..., N. Generate and plot realizations of a
Brownian bridge until you obtain one with maximum distance from zero exceeding the value 1.5. Plot the
realizations as below.



Several realizations of a Brownian bridge

1.5

1.0 4

0.5

w“’

0.0 A

—0.5 1

—1.0 A

—-1.5

0.0 0.2 0.4 0.6 0.8 1.0

Read code

Anticipate the output of the following code chunks:

1. This code gives the representation of an integer on a soroban. It returns an array with a column for each digit
in the number, where each column gives the number of heaven beads and the number of earth beadsin the
soroban representation of the digit. Predict the output of the code.

def sb(x):
X = int(x)
xs = str(x)
n = len(xs)
sb = np.zeros(nx2).reshape((2,n))

for i in range(0,n):

d = int(xs[i])

if(d >= 5):
h=1
e=d-5

else:

=0


https://www.sorobanexam.org/basics/read.html

sb[0,i] =

sb[1,i]

return sb

sb(348529)



