
For loops

The logic of loops in Python is just the same as it was in R. We need a list of index values, and then we give a set of
commands to execute as our index proceeds through the list of index values:

this
1
that
True

Often our index is a list of numbers, which we can make with the range function.

0
1
4
9
16
25

Here is something really cool: We can use a loop to create list!

['Jan 1st',
 'Feb 1st',
 'Mar 1st',
 'Apr 1st',
 'May 1st',

For and while loops

Karl Gregory
AUTHOR

import numpy as np
import matplotlib.pyplot as plt

x = ["this", 1, "that", True]
for index in x:
 print(index)

for i in range(6):
 print(i**2)

dates = [s + " 1st" for s in ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct'
dates

 Python > For and while loops 

for sindex in valued

commands

Day 1
DasIp 3

https://gregorkb.github.io/compstat/Python_running.html
https://gregorkb.github.io/compstat/Python_loops.html

 'Jun 1st',
 'Jul 1st',
 'Aug 1st',
 'Sep 1st',
 'Oct 1st',
 'Nov 1st',
 'Dec 1st']

Here we make a list of powers of 2.

[1, 4, 16, 64, 256]

Here is another example of creating a list using a loop. Here we use the ord() function, which provides a number
corresponding to a character stringʼs Unicode name together with the chr() function, which prints the character
corresponding to this number. We can make a list containing all the lower case letters like this:

['a',
 'b',
 'c',
 'd',
 'e',
 'f',
 'g',
 'h',
 'i',
 'j',
 'k',
 'l',
 'm',
 'n',
 'o',
 'p',
 'q',
 'r',
 's',
 't',
 'u',
 'v',
 'w',
 'x',
 'y',
 'z']

[2**a for a in range(0,10,2)]

letters = [chr(i) for i in range(ord('a'),ord('z')+1)]
letters

In R we typically instruct our index to begin at 1, but in Python it is more natural to make it begin at 0 because if we
want to access the first entry in a list or in a NumPy array, we do so using the index 0.

Letʼs write a loop to take the product of all the numbers in a NumPy array.

0.009506516272205374

In Python we can use the syntax x += y as a shorthand for x = x + y , and the same works for any of the
aritmetic operators + , - , * , and / . This kind of shorthand notation is recognized in C, but not in R.

Just like in the definition of functions, if we want a for loop to execute multiple commands, we do not need to put
them in curly braces; we just indent all the commands.

Below we define a function which computes the sample variance

of a NumPy array containing the values :

np.float64(1.0404074367332299)

x = np.random.random(5)
val = 1
for i in range(x.size):
 val *= x[i] # short way of writing val = val * x[i]

print(val)

Compute the sample variance

def svar(x):

 n = x.size
 m1 = 0
 m2 = 0
 for i in range(n):
 m1 += x[i]
 m2 += x[i]**2

 v = (m2 - m1**2/n)/(n - 1)
 return(v)

x = np.random.normal(loc = 0, scale = 1,size=100)
svar(x)

Add several lines to a plot

The code below makes a plot of several gamma distribution pdfs. To evaluate the gamma pdf, we need to import
the SciPy package: scipy.org.

import scipy.stats as stats

a = [1,1,1,2,5,10] # shape parameter values
b = [1,2,4,2,2,1/2] # scale parameter values
x = np.linspace(0,20,200)

fig, ax = plt.subplots(figsize = (8,5))
ax.set(ylim=(0,1/2))

for i in range(len(a)): # loop through the several parameter value combinations

 fx = stats.gamma.pdf(x,a[i],scale=b[i]) # need a shape and a scale parameter
 lab = "shape = " + str(a[i]) + ", scale = " + str(b[i])
 ax.plot(x,fx,label=lab)

ax.set_title("Probability density functions of several gamma distributions")
ax.set_xlabel("x")
ax.set_ylabel("density")
ax.legend()

https://scipy.org/

Suppose we wanted to plot all the same gamma pdfs, but not on the same set of axes. We can set up a figure with a
grid of subplots, setting the number of rows and columns. Then the sets of axes can be accessed by indexing within
square brackets. Check out the code below:

Make a grid of plots

fig, axs = plt.subplots(2,3,figsize=(12,8))

k = 0
for i in range(0,2):
 for j in range(0,3):

 fx = stats.gamma.pdf(x,a[k],scale=b[k]) # need a shape and a scale parameter
 axs[i,j].plot(x,fx)
 axs[i,j].set_title("shape = " + str(a[k]) + ", scale = " + str(b[k]))
 k += 1

fig.suptitle('Probability density functions of several gamma distributions')
plt.show()

Compute Wilcoxon rank sum statistic Pop
2 11 pop2 12

If we observe a “control” sample and a “treatment” sample , the Wilcoxon Rank Sum test
concludes a positive treatment effect (ʼs tend to be greater than ʼs) if the statistic

exceeds a high enough threshold, where is equal to if is true and if is false. Letʼs write a double for
loop to compute the value of :

np.int64(401)

While loops

The logic of while loops in Python is just the same as it was in R.

As a first example, letʼs write a function which returns an approximation to for any given by a partial
sum of the infinite series representation

where denotes the natural logarithm. Letʼs set up the function so that it stops adding terms when the
contribution of a new term is less than some tolerance level, and such that the function returns the number of
terms added.

def wilcx(X,Y):

 n = X.size
 m = Y.size
 val = 0

 for i in range(n):
 for j in range(m):

 val += X[i] <= Y[j]

 return(val)

n = 30
m = 25
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,m)

wilcx(X,Y)

Approximating the natural logarithm

OO
Ho MY s Hi MIT

I EY
I if Ey

0 ow

[4.605169750339702, 302]
4.605170185988092

The function returns both the approximation to and the number of iterations required to to meet the
convergence criterion.

Letʼs do a another example of Newtonʼs method:

We can find the reciprocal of a positive real number by finding the root of the equation

Newtonʼs method prescribes choosing an initial guess for the reciprocal of and then making the updates

until convergence. Letʼs write a function for finding the reciprocal of a number in this way (it turns out you have to
choose an initial value satisfying in order for the algorithm to converge. We will just choose the
inital value to be close to zero, knowing that if is large, we may need to choose a smaller initial value). This
example can be found on page 352 of the Calculus book. Letʼs make the function so that it can find the reciprocal
of a negative value.

def lnapp(z,tol=1e-8):

 k = 0
 ln = 0
 conv = False
 while(not conv): # in Python we cannot negate a boolean with '!' as we can in R! We n

 trm = ((z-1)/(z+1))**(2*k+1) / (2*k+1)
 ln += trm
 k += 1

 conv = abs(trm) < tol

 ln = 2*ln

 return([ln,k])

z = 100
print(lnapp(z))
print(np.log(z))

Newtonʼs method to find a reciprocal

def recip(a,tol = 1e-9):

 if(a < 0):

https://www.mathworks.com/help/simulink/ref_obsolete_blocks/hdlreciprocalobsolete.html

How to compute a reciprocal

How to get from a

Define f a a

ft a a a o

Find the root of the futon flo

anti

f x

92
x x a

Xu Xu a xn

2Xnax.LI

-0.16666666666666669
9.999999999999998
0.06896551724137931

If a function is convex, we can find where it is minimized by taking its first derivative and setting this equal to zero.
If we cannot find a closed-form expression for the root of the derivative, we can use Newtonʼs method. If the
function is and its first and second derivatives are denoted and , then we can, using Newtonʼs method, find
the minimizer of with the updates

starting from an initial guess , as this algorithm will lead to the value of such that . Note that the
same algorithm can be used to maximize a concave function.

As an example, the code below finds the minimizer of the function , using
 and .

 sgn = -1
 a = -a

 else: sgn = 1

 x = 0.01
 conv = False
 while(not conv):

 x0 = x
 x = 2*x - a * x**2

 conv = abs(x - x0) < tol

 x = sgn * x

 return(x)

print(recip(-6))
print(recip(0.1))
print(recip(14.5))

Newtonʼs method for minimizing a function

x = 0 # initial guess
tol = 1e-6 # convergence tolerance
conv = False
while(not conv):
 x0 = x
 x = x - (2*x + np.cos(x))/(2 - np.sin(x))

Want to minimize

f x sin

Fln 2x cos

f x 2 Sin

a

If we observe a random sample from a probability distribution with pmf or pdf which depends
on a parameter , the maximum likelihood estimator of is defined as the maximizer over of the
likelihood function, which is given by

The maximum likelihood estimator can be thought of as the value of the parameter which gives the greatest
probability to the data observed.

 conv = abs(x - x0) < tol

plt.rcParams['text.usetex'] = True # ask to use LaTex in plot labels

t = np.linspace(-1,1,50)
ft = t**2 + np.sin(t)
fig, ax = plt.subplots(figsize=(8,5))
ax.plot(t,ft,label="$f(x) = x^2 - \\sin(x)$")
ax.axvline(x,linestyle="--",linewidth = 1)
ax.axvline(0,linewidth = .2)
ax.axhline(0,linewidth = .2)
ax.legend()

Computing a maximum likelihood estimator

We can often use calculus methods to find the maximizer of the likelihood function; first, though, we usually
transform the likelihood function into what we call the log-likelihood function by taking the natural log. This
operation converts the product into a sum, on which it is easier to take derivatives. So, we define the log-likelihood
as

Recall from your calculus classes that the minimizer of a function (in particular a convex function) can be found by
setting the first derivative of the function equal to zero. Define the gradient of the log-likelihood as the
vector of partial derivatives of taken with respect to the individual parameters in . That is, set

This is often called the score function. Then we can obtain an expression for the maximum likelihood estimator by
solving the equation

where this is a system of equations, where is the number of parameters in .

It is often the case that the solution to the previous equation or system of equation does not admit a closed-form
expression; that is, rather than computing it with a formula, one must seek it with an algorithm. Newtonʼs
algorithm again shines: Define the matrix of 2nd-order partial derivatives of taken with respect to
as

The matrix of second-order partial derivatives of a function is often called the Hessian of the function. From here,
Newtonʼs method prescribes the updates

after initialization of at some arbitary starting point.

Note that if contains only a single parameter (that is if is a scalar and not a vector), the gradient and the Hession
simplify such that and , so that the Newton update may be written as

where and are the first- and second- order derivatives of the log-likelihood, respectively.

Xu How to estimate α

hot from the
data

Ähm

Suppose are a random sample from the distribution, which has pdf given by

where is the gamma function. The parameter is called the shape parameter; usually the
gamma distribution also has a scale parameter , but this gamma distribution has the scale parameter set equal to

, so we will not have to estimate it. The likelihood function is given by

and the log-likelihood is given by

The score function is the first derivative of the log-likelihood with respect to , which is given by

where is the first derivative of the gamma function and is called the digamma function.
The Hessian is given by

where is the derivative of and is called the trigamma function. The Newtonʼs method update for seeking
the maximum likelihood estimator for can thus be written

after initializing at some starting value.

The code below defines a function for seeking the maximum likelihood estimator with Newtonʼs algorithm. In
order to evaluate the digamma and trigamma functions, we import a function called polygamma from a library
called scipy.special . Rather than importing that entire library, we import only the needed function:

Gamma shape parameter

from scipy.special import polygamma # to compute the digamma and trigamma functions!

def gamshape(X,tol=1e-6): # function to compute the maximum likelihood estimator of alpha
 a = 1
 conv = False
 while(not conv):
 a0 = a
 a = a - (polygamma(0,a) - np.mean(np.log(X))) / polygamma(1,a)
 conv = abs(a - a0) < tol

sie

an 2
so

0

Practice

Practice writing code and reading code with the following exercises.

 return(a)

demonstrate by generating a random sample from the Gamma(a,1) distribution and then est
n = 500
a_true = 2
X = np.random.gamma(shape = a_true,scale = 1, size=n)

ahat = gamshape(X)
x = np.linspace(0,10,200)
fxhat = stats.gamma.pdf(x,a=ahat,scale = 1) # best-fitting gamma distribution

fig, ax = plt.subplots(figsize=(8,5))

ax.hist(X,density = True,label = "Histogram of random sample")
ax.plot(x,fxhat,label="Best fitting gamma distribution")
ax.legend()

Write code

1. Create the list shown below with one line of code.

['Level 1', 'Level 3', 'Level 5', 'Level 7', 'Level 9']

2. Write a function in Python called to sort the entries of a one-dimensional NumPy array. Write the function so
that it sorts the entries in increasing order by default, but allows the user to specify that the entries be sorted
in decreasing order if desired.

3. Consider the function over the interval . The inflection point of a function is the point
at which its slope stops decreasing and begins increasing (or stops increasing and begins decreasing, as the
case may be). One may find the inflection point by finding where the second derivative (the slope of the slope)
is equal to zero. The derivatives of this function are

Write an algorithm which finds the inflection point of the function over the interval using the Newton
updates

starting from some initial guess . The above functions are plotting below with the inflection point indicated.

4. A Brownian motion is a random function on the interval satisfying certain properties. We can
generate and plot an approximate, discretized realization of , , by generating, for some large ,
independent random variables from the standard normal distribution and plotting the points

, , where and

for . Write a loop which plots five realizations of Brownian motion on a single plot. Tip: Try
making use of the np.cumsum function. The plot should resemble the one below (these approximations are
based on):

5. A Brownian bridge is a random function on constructed from a Brownian motion such
that . The Brownian bridge always “begins and ends” at . An approximate, discretized
realization of a Brownian bridge can be visualized by plotting the points , , where

with and defined as in the previous exercise, for . Generate and plot realizations of a
Brownian bridge until you obtain one with maximum distance from zero exceeding the value . Plot the
realizations as below.

Anticipate the output of the following code chunks:

1. This code gives the representation of an integer on a soroban. It returns an array with a column for each digit
in the number, where each column gives the number of heaven beads and the number of earth beads in the
soroban representation of the digit. Predict the output of the code.

Read code

def sb(x):

 x = int(x)
 xs = str(x)
 n = len(xs)
 sb = np.zeros(n*2).reshape((2,n))

 for i in range(0,n):

 d = int(xs[i])

 if(d >= 5):

 h = 1
 e = d - 5

 else:

 h = 0
 e = d

https://www.sorobanexam.org/basics/read.html

 sb[0,i] = h
 sb[1,i] = e

 return sb

sb(348529)

