
8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 1/12

As we have demonstrated, you can use the R console like a calculator. However, the capabilities of R extend far beyond
arithmetic! The first topic we will cover in exploring these capabilities is the various types of “objects” we can create in R.

Vectors

A vector in R is a list either of numbers, character strings, or logical values. We can create a vector using the command
c() :

A vector with the numbers 2 and 1 can be created by the command

We can see what is in the vector x  by typing x  or print(x)  into the console:

[1] 2 1

[1] 2 1

Note that we can define objects using =  instead of <-  if we wish (the <-  is referred to as the assignment operator, and
this is peculiar to R. Most languages just use = . If you donʼt like using <-  just use = .):

[1] 1 2

A numeric vector with all the integers in a sequence can be created by

 [1] -1  0  1  2  3  4  5  6  7  8  9 10

A numeric vector with equally spaced values between any numbers can be created as

Types of objects

Karl Gregory
AUTHOR

Numeric vectors

x <- c(2,1)

x

print(x)

x = c(1,2)
x

a <- -1
b <- 10
int <- a:b
int

 R > Types of objects 

 

e a

http://localhost:5895/R_running.html
http://localhost:5895/R_objects.html


8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 2/12

 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

or

 [1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
[16] 0.75 0.80 0.85 0.90 0.95 1.00

A character vector with the strings “cat”, “dog”, and “fish” is created as

[1] "dog"  "cat"  "fish"

If we mix numbers and character strings we end up with a character vector:

[1] "1"    "fish"

The paste()  function is useful for putting together character strings:

[1] "fish 1" "fish 2" "fish 3"

[1] "0°C"  "2°C"  "4°C"  "6°C"  "8°C"  "10°C"

[1] "n = 10"

a <- 0
b <- 1
vals <- seq(a,b,length=11)
vals

a <- 0
b <- 1
vals <- seq(a,b,by=0.05)
vals

Character vectors

pets <- c("dog","cat","fish")
pets

v <- c(1,"fish")
v

paste("fish",1:3)

paste(seq(0,10,by=2),"\u00B0","C",sep="")

n <- 10
paste("n = ", n, sep = "")



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 3/12

[1] "1-2-3-4-5-6-7-8-9-10"

Create a logical vector with the values FALSE , TRUE , F , or T . These are called logical values or boolean values.

[1]  TRUE FALSE FALSE  TRUE

If we include a numeric value, the logicals are “coerced” to numeric values so that the whole vector will becomes a
numeric vector; TRUE  is coerced to 1 and FALSE  to 0:

[1] 1.000000 0.000000 0.000000 3.141593

If we include a character string, the vector becomes a character string, with the logical entries converted to the strings
“TRUE” and “FALSE”.

[1] "TRUE"  "FALSE" "FALSE" "pi"   

To access an element of a vector, we use square brackets:

[1] 0.02

We can select more than one element like this:

[1] "cat"  "fish"

We can replace an entry with a new value, for example, with:

paste(1:10, collapse = "-") # collapse into a single string

Logical vectors

tf <- c(TRUE,FALSE,F,T)
tf

tf2 <- c(TRUE,FALSE,F,pi)
tf2

tf3 <- c(TRUE,FALSE,F,"pi")
tf3

Accessing vector elements

x <- seq(0.01,0.99,by = 0.01)
x[2]

pets <- c("dog","cat","fish")
pets[2:3]

pets[3] <- "snake" 
pets



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 4/12

[1] "dog"   "cat"   "snake"

We can also exclude an element or a set of elements from a vector by putting a negative subscript or a vector of negative
subscripts in the brackets:

[1] "cat"   "snake"

[1] "cat"

Another useful function for defining vectors is the rep()  function for repeating a numeric, character, or logical value (or
vector) a number of times:

[1] 3.141593 3.141593 3.141593

[1] "dog"   "cat"   "snake" "dog"   "cat"   "snake"

Matrices

A matrix is a table of numbers, character strings, or logical values with a number of rows and columns.

One way to construct a matrix is by populating the rows and columns with the entries of a vector using the matrix()
function:

     [,1] [,2] [,3] [,4]
[1,]    1    3    5    7
[2,]    2    4    6    8

If we want to fill the values across the rows we add the option byrow = T :

     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8

We can also use the cbind()  or rbind()  functions to build matrices from vectors given as the columns or the rows:

pets[-1]

pets[-c(1,3)]

z <- rep(pi,3)
z

rep(pets,2)

A <- matrix(1:8,nrow = 2)
A

A <- matrix(1:8,nrow = 2,byrow = T)
A

nee e



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 5/12

     x  y
[1,] 1 -1
[2,] 2 -2
[3,] 3 -3

  [,1] [,2] [,3]
x    1    2    3
y   -1   -2   -3

Note that the cbind()  and rbind()  operations result in a matrix with columns or rows having names given by the
vectors. We can access the names of the columns or rows of a matrix with the colnames()  and rownames()  functions,
respectively:

[1] "x" "y"

[1] "x" "y"

If the rows or columns of a matrix are unnamed, these functions will return the NULL  value:

NULL

NULL

We can have matrices of character values:

     [,1] [,2] [,3] [,4]
[1,] "a"  "b"  "c"  "d" 
[2,] "e"  "f"  "g"  "h" 
[3,] "i"  "j"  "k"  "l" 

x <- c(1,2,3)
y <- -x
X <- cbind(x,y)
X

Xt <- rbind(x,y)
Xt

colnames(X)

rownames(Xt)

rownames(X)

colnames(Xt)

B <- matrix(letters[1:12],nrow = 3, byrow = T)
B



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 6/12

The above used the built-in vector letters .

We can access elements or sub-matrice with square brackets:

[1] "g"

     [,1] [,2]
[1,] "c"  "d" 
[2,] "g"  "h" 

Matrices once defined as character matrices remain charactor matrices:

     [,1] [,2] [,3] [,4]
[1,] "a"  "1"  "c"  "d" 
[2,] "e"  "f"  "g"  "h" 
[3,] "i"  "j"  "k"  "l" 

We can query the dimension of a matrix with the dim()  function:

[1] 3 4

We can get the transpose a matrix (rows become columns and vice versa) with t() :

  [,1] [,2] [,3]
x    1    2    3
y   -1   -2   -3

Later on we will cover how to perform matrix operations such as matrix multiplication and inversion in R.

Arrays

An array consists of several matrices of the same dimension “stacked” as it were as “slices”, on top of each other. These
behave just like matrices except that they have row, column, and “slice” indices.

Define an array with the array()  function:

B[2,3]

B[1:2,3:4]

B[1,2] <- 1
B

dim(B)

t(X)

M <- array(c(1:24),dim = c(3,4,2))
M



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 7/12

, , 1

     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

, , 2

     [,1] [,2] [,3] [,4]
[1,]   13   16   19   22
[2,]   14   17   20   23
[3,]   15   18   21   24

We access elements with row, column, and “slice” indices.

[1] 19

     [,1] [,2]
[1,]    1    4
[2,]    2    5

Data frames

A data frame is like a matrix except that its columns can be vectors of di�erent types. The data frame is a like the R version
of a “spreadsheet”, and its columns are typically given names.

We can construct a data frame with the data.frame()  function.

   pets population mammal
1   dog         30   TRUE
2   cat         12   TRUE
3 snake         34  FALSE

We can access a column of a data frame using its name like this:

[1] "dog"   "cat"   "snake"

We can get a summary of the columns in a data frame with the summary()  function:

M[1,3,2]

M[1:2,1:2,1]

df <- data.frame(pets = pets, population = c(30,12,34), mammal = c(T,T,F))
df

df$pets

summary(df)



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 8/12

     pets             population      mammal       
 Length:3           Min.   :12.00   Mode :logical  
 Class :character   1st Qu.:21.00   FALSE:1        
 Mode  :character   Median :30.00   TRUE :2        
                    Mean   :25.33                  
                    3rd Qu.:32.00                  
                    Max.   :34.00                  

Lists

A list is a collection of objects of any type. If you have several matrices or vectors of di�erent sizes, a list can be a
convenient place to store and access them.

We can construct a list with the list()  function:

$pets
[1] "dog"   "cat"   "snake"

$int
 [1] -1  0  1  2  3  4  5  6  7  8  9 10

We can access the elements in a list using the name or with a double-bracketed index [[]] .

[1] "dog"   "cat"   "snake"

[1] "dog"   "cat"   "snake"

[1] "snake"

Functions

A function is a set of commands which execute on some user-supplied arguments, or input values. We have seen some
functions above such as the c() , print() , seq() , paste() , and so on. Later on we will discuss how to define new
functions.

To access the help documentation for a function, just execute ?<nameoffunction> . For example:

mylist <- list(pets = pets,int = int)
mylist

mylist$pets

mylist[[1]]

mylist[[1]][3]

?paste

or help paste



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 9/12

You will do this very o�en, even a�er you become proficient in R.

Checking the type of an object

For any of these object classes, we can check whether an object belongs to the class with the functions is.vector() ,
is.matrix() , etc., which return a logical value:

[1] TRUE

[1] TRUE

[1] FALSE

[1] FALSE

[1] TRUE

[1] TRUE

[1] TRUE

Coercion of one type of object to another type

It is also possible to “coerce” one type of object to another type. For example, we can choose to read numeric vectors as
character vectors or to read a matrix as a vector with the functions as.character() , as.vector() . There are several
such functions beginning with as.  for coercing one type of object to another type.

Here we coerce a numeric vector to a character vector:

 [1] "-1" "0"  "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"

is.vector(pets)

is.character(pets)

is.matrix(df)

is.data.frame(X)

is.numeric(X)

is.data.frame(df)

is.function(paste)

as.character(int)



8/19/25, 1:02 PM Types of objects – Computing in Statistics

localhost:5895/R_objects.html 10/12

If the coercion does not make sense, we will get missing values, which R represents as NA . A warning may be issued. For
example, this happens when we try to convert certain character vectors to a numeric vector:

Warning: NAs introduced by coercion

[1] NA NA NA

If a character string can be converted to a number, the coercion will work:

[1]     1.234 10000.000

When logical vectors are coerced to numeric vectors, the values TRUE  and FALSE  are converted to 1 and 0, respectively:

[1]  TRUE FALSE FALSE  TRUE

[1] 1 0 0 1

If we convert a numeric vector to a logical vector, nonzero values are converted to TRUE  and zeroes are converted to
FALSE :

 [1] -1  0  1  2  3  4  5  6  7  8  9 10

 [1]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE

If we convert a matrix to a vector the operation “vectorizes” the matrix, which means that it returns a vector containing
all the columns of the matrix concatenated into one long vector.

     x  y
[1,] 1 -1
[2,] 2 -2
[3,] 3 -3

as.numeric(pets)

ch <- c("1.234","1e04")
as.numeric(ch)

tf

as.numeric(tf)

int

as.logical(int)

X

as.vector(X)


