
8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 1/26

Arithmetic operations

In R we use + , - , * , and / for addition, subtraction, multiplication, and division, respectively, and ** or ^ for raising
to a power.

[1] 40

If two numeric vectors are of the same length, these operators will work elementwise in this way:

[1] 5 7 9

[1] 4 25 216

If two numeric vectors are not of the same length, the entries of the shorter vector are “recycled”. It is important to pay
attention to how this happens.

[1] 1 3 3 5 5 7

If the length of the longer vector is not a multiple of the length of the shorter vector a warning is issued:

Warning in x * y: longer object length is not a multiple of shorter object
length

[1] 0 2 0 4 0

Basic operations

Karl Gregory
AUTHOR

x <- 5
y <- 8
x*y

x <- c(1,2,3)
y <- c(4,5,6)
x + y

y**x

x <- c(0,1)
y <- c(1,2,3,4,5,6)
x + y

x <- c(0,1)
y <- c(1,2,3,4,5)
x*y

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 2/26

Letʼs not forget the modulo operator %% . The expression x %% y will return the remainder from the division of x by y .
This can come in very handily!

[1] 2

[1] 1 4

It is also handy to know the floor() and ceiling() functions, which round down and up, respectively:

[1] 1 1 -3 5

[1] 2 2 -2 5

And then there is the round() function which rounds in the usual way (to the nearest whole number unless you supply a
number of decimal places).

[1] 3

[1] 3.142

Logical operations

Here we learn how to obtain TRUE and FALSE values from logical comparisons as well as some ways we can put logical
values to use.

In R we use > , >= , < , and <= for “ ”, “ ”, “ ”, and “ ”, respectively and == for “ ” and != for . We will also use &
and | for “and” and “or”.

A logical comparison will return a logical value, either TRUE or FALSE .

5 %% 3

x <- c(34,59)
y <- c(3,5)
x %% y

a <- c(1.2,1.8,-2.1,5)
floor(a)

ceiling(a)

round(pi)

round(pi,3)

Logical comparisons

2 < 3

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 3/26

[1] TRUE

[1] TRUE

[1] FALSE

[1] TRUE

We can ask if two conditions hold simultaneously with & and whether one or the other or both conditions hold with | :

[1] TRUE

[1] FALSE

[1] TRUE

We can negate a logical value by putting ! in front of it:

[1] FALSE

[1] TRUE

[1] FALSE

For character strings, the operators with inequalities in them compare the strings according to alphabetical order.

[1] FALSE

2 == 2

2 > 3

2 != 3

x <- 1/2
(x >= 0) & (x < 1) # is x in the interval [0,1)?

(x < 0) | (x >= 1) # is x outside the interval [0,1)?

((x >= 0) & (x < 1)) | ((x >= 2) & (x < 3)) # is x in either of the intervals [0,1) or [2,3)?

!T

!FALSE

!(2 < 3)

"cat" > "dog"

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 4/26

[1] TRUE

[1] TRUE

[1] TRUE

Logical operations can be used with vectors:

 [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

The values of the shorter vector are recycled just as with arithmetic operations:

 [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE

Logical operators can be used to access a subset of the entries of a vector which satisfy a condition:

[1] 2 4 6 8

The which() function tells us which entries of a logical vector are TRUE :

[1] 1 2 5

[1] 3

So we have two ways of subsetting values in a vector:

"cat" < "dog"

"cat" == "cat"

"cat" <= "cat"

x <- 1:10
x <= 5

x <- 1:10
y <- c(0,10)
x < y

Subsetting vectors with logical values

x[x < y]

a <- c(2,7,4,5,9,2,0)
b <- c(1,3,4,6,5,9,2)
which(a > b)

which(a == b)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 5/26

[1] 2 7 9

[1] 2 7 9

We can replace certain values in a vector with other values using the above kind of indexing:

[1] 0 0 4 5 0 2 0

The functions any() and all() can be applied to logical vectors. The any() function will return TRUE if any value in
the vector is TRUE and the all() function will return TRUE if all values in the vector are TRUE :

[1] FALSE

[1] TRUE

Recall that when logical values are coerced to numeric values, TRUE takes the value of and FALSE takes the value of .
If we use logical values in arithmetic calculations they will be automatically coerced to these numeric values:

[1] 5

[1] 0.6666667

Define a vector and replace values below zero with zero:

[1] 0.0 0.2 0.0 0.3 1.1 0.0

a[a>b]

a[which(a>b)]

a[a>b] <- 0 # replace an entry of a with zero if it is greater than the corresponding entry of
a

u <- c(-2.1,-3.9,-5.6)
any(u > 0)

all(u < 0)

Logical values in arithmetic calculations

T+T+T+T+T+F+F

(T+T)/(T+T+T)

x <- c(-0.3,0.2,-0.2,0.3,1.1,-0.4)
x*(x > 0)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 6/26

Set to zero values with absolute value not exceeding a threshold

[1] 0.0 0.0 0.0 0.0 1.1 0.0

Basic statistics functions

Suppose x contains several observations from a random sample. For example, Table 2.1 of Davison (2003) presents data
collected during a study of the amount of time women spend giving birth. The first day of the study, which took place at a
single hospital, resulted in the following times (in hours).

The functions sum() , mean() , sd() , var() , min() , max() , and median() return the mean, standard deviation,
variance, minimum, maximum, and median of a numeric vector:

[1] 140.25

[1] 8.765625

[1] 4.296654

[1] 18.46124

[1] 2.1

[1] 19

[1] 8.825

The length() function gives the length of a vector:

thresh <- 0.5
x*(x < -thresh) + x*(x > thresh)

x <- c(10.00,7.30,8.50,4.25,16.00,9.50,10.40,6.40,9.75,2.10,19.00,5.60,8.75,8.90,10.40,3.40)

sum(x)

mean(x)

sd(x)

var(x)

min(x)

max(x)

median(x)

S FELx.FI
5 f E

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 7/26

[1] 16

The summary() function prints some of the above statistics as well as the 1st and 2rd quartiles:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.100 6.200 8.825 8.766 10.100 19.000

The sort() function sorts the data:

 [1] 2.10 3.40 4.25 5.60 6.40 7.30 8.50 8.75 8.90 9.50 9.75 10.00
[13] 10.40 10.40 16.00 19.00

 [1] 19.00 16.00 10.40 10.40 10.00 9.75 9.50 8.90 8.75 8.50 7.30 6.40
[13] 5.60 4.25 3.40 2.10

The order() function gives the indices in the order needed to sort the data:

 [1] 10 16 4 12 8 2 3 13 14 6 9 1 7 15 5 11

 [1] 2.10 3.40 4.25 5.60 6.40 7.30 8.50 8.75 8.90 9.50 9.75 10.00
[13] 10.40 10.40 16.00 19.00

The rank() function gives the position each value would have in the sorted vector:

 [1] 12.0 6.0 7.0 3.0 15.0 10.0 13.5 5.0 11.0 1.0 16.0 4.0 8.0 9.0 13.5
[16] 2.0

Missing values

Data will o�en come with missing values. Suppose that one of the time giving birth of one of the mothers was not
recorded in the data. R encodes missing values as NA , so we might have the vector

length(x)

summary(x)

sort(x)

sort(x,decreasing = TRUE)

order(x)

x[order(x)]

rank(x)

y <- c(10.00,7.30,8.50,4.25,16.00,9.50,10.40,6.40,NA,2.10,19.00,5.60,8.75,8.90,10.40,3.40)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 8/26

Any function computed on a missing value results in another missing value:

[1] NA

Most basic statistics functions in R have an option to ignore any missing values. One adds to the function na.rm =
TRUE , where rm stands for “remove”.

[1] 8.7

[1] 4.439152

Some functions ignore missing values by default, like the sort() function:

 [1] 2.10 3.40 4.25 5.60 6.40 7.30 8.50 8.75 8.90 9.50 10.00 10.40
[13] 10.40 16.00 19.00

To check for missing values, one can use the is.na() function, which returns FALSE for non-missing values and TRUE
for missing values.

 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE

[1] TRUE

Another kind of missing value is coded by R as NaN , which stands for “not a number”. An NaN registers as missing by the
is.na() function. Note that there is also a is.nan() function:

[1] NaN

[1] TRUE

mean(y)

mean(y, na.rm = TRUE)

sd(y, na.rm = TRUE)

sort(y)

is.na(y)

any(is.na(y))

0/0

is.na(0/0)

is.nan(0/0)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 9/26

[1] TRUE

[1] FALSE

One can also get Inf or -Inf , but these are not treated as missing values or non-numbers:

[1] Inf

[1] -Inf

[1] FALSE

[1] FALSE

One can replace missing values in a vector with some other value by subsetting the vector with is.na() :

 [1] 10.00 7.30 8.50 4.25 16.00 9.50 10.40 6.40 -99.00 2.10
[11] 19.00 5.60 8.75 8.90 10.40 3.40

Lastly, a quick way to remove NA values from a vector is to use the na.omit() function:

[1] 1 2 3 5
attr(,"na.action")
[1] 4
attr(,"class")
[1] "omit"

Applying functions to matrices and arrays

We may wish to compute the mean or some other statistic on each column or row of a matrix. We can do this most easily
with the apply() function.

For example:

is.nan(NA)

1/0

-1/0

is.na(1/0)

is.nan(1/0)

y[is.na(y)] <- -99 # replace missing values with the value -99
y

vals <- c(1,2,3,NA,5)
na.omit(vals)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 10/26

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24

[1] 6 15 24 33 42 51 60 69

[1] 92 100 108

[1] 3 6 9 12 15 18 21 24

[1] 7.348469 7.348469 7.348469

If we apply mean() , sd() , var() , min() , max() , or median() to an entire matrix, the function will put all the values
in the matrix into a single vector before computing the result.

[1] 12.5

[1] 12.5

We can similarly apply functions to an array:

X <- matrix(1:24,8,3,byrow=T)
X

apply(X,1,sum) # row sums

apply(X,2,sum) # column sums

apply(X,1,max) # row maxima

apply(X,2,sd) # column standard deviations

mean(X)

mean(as.vector(X))

A <- array(dim=c(8,3,2))
A[,,1] <- X
A[,,2]<- -X
A

I

II

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 11/26

, , 1

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24

, , 2

 [,1] [,2] [,3]
[1,] -1 -2 -3
[2,] -4 -5 -6
[3,] -7 -8 -9
[4,] -10 -11 -12
[5,] -13 -14 -15
[6,] -16 -17 -18
[7,] -19 -20 -21
[8,] -22 -23 -24

 [,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0
[4,] 0 0 0
[5,] 0 0 0
[6,] 0 0 0
[7,] 0 0 0
[8,] 0 0 0

 [,1] [,2]
[1,] 2 -2
[2,] 5 -5
[3,] 8 -8
[4,] 11 -11
[5,] 14 -14
[6,] 17 -17
[7,] 20 -20
[8,] 23 -23

apply(A,c(1,2),mean) # average across slices

apply(A,c(1,3),mean) # average across columns

apply(A,c(2,3),mean) # average across rows

I

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 12/26

 [,1] [,2]
[1,] 11.5 -11.5
[2,] 12.5 -12.5
[3,] 13.5 -13.5

Making plots

R has several plotting functions for visualizing data.

For a sample of numeric values, such as the times giving birth, one can make a histogram (although this sample is a little
too small for a histogram to be able to show the shape of the distribution):

hist(x)

hist(x,breaks=10) # change the number of bins

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 13/26

The plot() function can be used to plot just about anything.

If we use the plot function on a vector of numbers, its values are plotted against the integers starting from 1 and going up
to the length of the vector (the indices).

plot(x)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 14/26

We can make a scatterplot like this:

x <- c(0.91, 0.11, -0.34, 0.91, -1.30, 0.15, 0.16, -1.04, 0.66, -2.06, 1.69, 1.78, -0.07
y <- c(2.11, 2.19, -1.42, 1.05, -2.77, 1.91, -0.81, 0.12, -0.69, -3.83, 2.68, 2.43, 0.59,
plot(y~x)

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 15/26

plot(x,y) # two ways of getting the same plot

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 16/26

plot(y,x) # whichever you put first goes on the horizontal axis

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 17/26

We can set some plotting options with the par() function prior to running the plot() command as well as add some
options to the plot() function to customize it. A�er the plotting command, more can be added to the plot, for example
additional axis labels with the axis() function, etc.

par(cex = .8, # change size of font in plots
 mar = c(4.1,4.1,4.1,5.1) # set the margins of the plot (lower,left,upper, right)
)

plot(y~x,
 bty="l", # type of box drawn around plot
 pch = 19, # plotting symbol
 col = "red",
 cex = 1.5, # size of symbols plotted
 xlab = "Label for the horizontal axis",
 ylab = "Label for the vertical axis",
 main = "Plot title",
 xlim = c(-3,2), # set limits of horizontal axis
 ylim = c(-5,3) # set limits of vertical axis
)

axis(side = 4, # side = 4 is the right side
 at = seq(-4,4,by = 2), # where the tick marks should be
 las = 2) # option to make the text horizontal instead of vertical

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 18/26

We can plot lines or curves as follows:

x <- seq(-2*pi,2*pi,by = 0.01) # make a dense sequence of x values
y <- sin(x) # evaluate a function a each value of x
plot(y~x, type = "l") # specify type = "l" to connect the points in the scatterplot with line

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 19/26

We can add points or lines to an existing plot with the points() or the lines() functions. We can also add a legend
with the legend() function:

plot(y~x,
 type = "l",
 xaxt = "n")

x0 <- pi*c(-4:4)/2

customize x axis labels
axis(side = 1, at = x0, labels = paste(c(-4:4)/2,"\u03c0",sep = ""))

points(x = x0, # give vector of x values
 y = sin(x0), # give vector of y values
 pch = 15, # specify plotting symbol
 col = rgb(1,0,0,.5)) # red/green/blue/opacity function for making cool colors!!

lines(cos(x)~x,
 col = "blue",
 lty = 4) # specify line type

legend(x = -2*pi, # x position of upper left corner of legend box
 y = -.25, # y position of upper left corner of legend box
 col = c("black","blue",rgb(1,0,0,.5)), # colors
 pch = c(NA,NA,15), # symbols
 lty = c(1,4,NA), # line types

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 20/26

Sometimes it is useful to set up an empty plot and add to this. Use plot(NA,...) and specify some options. The
following code demonstrates the abline() function and the polygon() function, as well as the text() function for
adding text in the middle of the plot somewhere.

 legend = c("sine(x)","cosine(x)","point of interest"), # text in legend
 bty = "n") # don't put legend on a solid, bordered box

plot(NA,
 xlim = c(-1,1),
 ylim = c(-1,1),
 xlab = "", # put no label on x axis
 xaxt = "n", # suppress plotting of x axis
 yaxt = "n",
 ylab = "", # no yaxis label,
 bty = "n", # no border around the plot
 xaxs = "i", # do not add extra "padding" beyond limits given in xlim
 yaxs = "i", # do not add extra "padding" beyond limits given in ylim
 asp = 1 # set y/x aspect ratio equal to 1 (so a 45 degree line will really be at 45 degre
)

abline is for plotting straight lines
abline(h = 0, lty = 3, col = "lightgray") # a horizontal line at height 0
abline(0,1) # a line with intercept 0 and slope 1
abline(v = 0, lty = 3, col = "lightgray") # a vertical line at height 0

polygon fills a polygon based on given (x,y) coordinates of the corners.

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 21/26

polygon(x = c(0,1/2,1/2,0), # x coordinates
 y = c(0,0,1/2,0), # y coordinates
 col = rgb(0,1,0,.5), # color
 border = NA) # suppress border of polygon

draw a single line segment
lines(x = c(0,-1/2),
 y = c(0,1/2),
 col = "red")

add text to the plot
text(x = -1/2,
 y = 1/2,
 pos = 4, # place text to the right of the specified point
 label = "hello?",
 font = 3) # in italics

add text to the plot
text(x = 1,
 y = 1,
 pos = 4, # place text to the right of the specified point
 label = "are you there?",
 font = 3,
 xpd = NA) # xpd = NA make things show up even if they are located outside of the plotting

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 22/26

We can make plots with multiple panels in a couple of ways. One is to specify an mfrow= in the par() function. We can
also add text anywhere in the margin with the mtext() function:

Another way is to use the layout() function. One has to define a matrix, as below:

 [,1] [,2]
[1,] 1 2
[2,] 3 3

par(mfrow = c(1,2)) # makes a 1 by 2 table of plots.
plot(y~x,type = "l")
plot(x~y, type = "l")

mtext(outer = T, # put text in the outer margin,which is the margin outside the entire multi-p
 side = 3, # upper side
 text ="Two plots!", # the text
 line = -2,# line of outer margin on which to put this. Can use a negative number to brin
 font = 2) # make bold

M <- matrix(c(1,2,3,3),byrow = T, nrow = 2)
M

layout(M)
first plot will be in upper left,
second in upper right,

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 23/26

To learn more about any of these functions, just run ?plot , ?layout etc., in the console.

Practice

Practice writing code and anticipating the output of code with the following exercises.

1. Write a simple line of code which will produce this sequence:

 [1] 2 -4 6 -8 10 -12 14 -16 18 -20 22 -24

2. For a numeric vector x , write a condition such that x[<cond>] will keep only the even numbers in x .

3. Write a line of code to extract from the vector of surnames given below all the surnames alphabetically preceding
“Gregory”.

third all along the bottom

plot(y~x, type = "l", bty = "7")
plot(x~y, type = "l", bty = "c")
plot(1:20,pch = 1:20, main = "20 plotting symbols", bty = "l")

Write code

surnames <- c("Omlin","Garabedian","King","Ayres","Cuniowski","Tyner","Reebel","Moran","Maglio

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 24/26

4. Write code to produce the figure below:

5. Write code to produce the plot below:

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 25/26

Anticipate the output of the following code chunks:

1.

2.

3.

4.

Read code

a <- c(2,3,-5,6,8,-9)
b <- c(2,8,-3,6,-1,8)
(a < 0) & (b > 0)

a <- c(2,3,-5,6,8,-9)
b <- c(T,F,T,F,T,F)
which(a < b)

sec <- 124
a <- floor(sec / 60)
b <- sec %% 60
paste(sec," seconds is ",a," minutes and ",b," seconds", sep="")

8/26/25, 1:04 PM Basic operations – Computing in Statistics

https://gregorkb.github.io/compstat/R_basicops.html 26/26

5.

plot(NA,
 xlim=c(-1,1),
 ylim = c(-1,1),
 asp = 1,
 bty = "n")
th <- seq(0,2*pi,length=9) - pi/8
x <- cos(th)
y <- sin(th)
polygon(x = x, y= y, col = "red", border = NA)
text(0,0,labels = "STOP",col = "white",cex = 3)

x <- seq(-4,4,by = 0.01)
y <- (x-2)*(x+2)
plot(y~x,type = "l")
abline(h = 0, lty = 3, col = "red")
abline(v = c(-2,2),lty = 3, col = "blue")

References

Davison, Anthony Christopher. 2003. Statistical Models. Vol. 11. Cambridge university press.

