
8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 1/16

An essential part of programming is learning how to write original functions so that other people or you yourself can use
them.

A function in R is a type of object, and we can create new functions just as we can create new vectors or matrices:

[1] TRUE

Simple “one-liner” functions 

We can create a new function by using the function()  command. The code below defines a function called logistic
given by

and evaluates it at .

[1] 0.7310586

We see that to define a function with an argument x  we just need to write an expression involving x  a�er
function(x) .

We can plot the function with plot() .

Defining functions

Karl Gregory
AUTHOR

is.function(mean)

logistic <- function(x) exp(x)/(1 + exp(x))
logistic(1)

plot(logistic)  # will plot over x from 0 to 1 by default

 R > Defining functions 

 

https://gregorkb.github.io/compstat/R_running.html
https://gregorkb.github.io/compstat/R_functiondef.html


f x IT logistic



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 2/16

plot(logistic,xlim = c(-5,5)) # set the limits of the horizontal axis

a bx

f x a b

9 0 e

b Tex



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 3/16

To make the function more interesting, letʼs say we want to define a function for

where the user can specify the values of the parameters  and , which serve as a kind of “intercept” and “slope”. We can
do this as follows:

Now we can plot a few di�erent versions of the logistic function with di�erent “intercept” and “slope” parameters. If a
function takes more than one argument, like our new-and-improved logistic()  function, we cannot plot it using
plot(logistic)  as we did before, because we will need to specify values for the arguments a  and b . So in order to
plot the function, we first have to evaluate it over a sequence of values, as below:

logistic <- function(x,a,b) exp(a + b*x)/(1 + exp(a + b*x))

x <- seq(-5,5,length = 200) # make a sequence of x values
plot(logistic(x,a = 0, b = 1)~x, 
     type = "l",
     ylab = "logistic(x,a,b)")
lines(logistic(x,a = 1, b = 2)~x, col= "blue")
lines(logistic(x,a = -2, b = -3/2)~x, col= "red")



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 4/16

Note that if we do not specify values for a  and b , we will get an error message:

Error in logistic(2): argument "a" is missing, with no default

The error message says “with no default”. If we wish, we can set default values for the arguments a  and b  by setting
them equal to something when we define the function:

[1] 0.8807971

Now a = 0  and b = 1  by default, so the arguments will take these values if no other values are specified.

Order of arguments supplied to a function

When using a function which takes multiple arguments, such as our logistic()  function which takes the arguments x ,
a , and b , it is not necessary to “name” the arguments when executing the function. If arguments are not named, they
will be used according to in the order in which the arguments appear in the function definition.

So we get the same result from the following:

logistic(2) 

logistic <- function(x,a = 0,b = 1) exp(a + b*x)/(1 + exp(a + b*x))
logistic(2)



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 5/16

[1] 0.06008665

[1] 0.06008665

If one names the arguments, they can be put in any order:

[1] 0.06008665

[1] 0.07585818

Unless you are very confident that you know the order of the arguments in the definition of a function, it is best to
explicitly name each argument.

Functions defined by several commands

O�en we need to define functions which perform more than just one simple calculation, so they need to execute more
than one line of code. We could actually break the definition of our logistic()  function into multiple lines of code as
follows:

[1] 0.7310586

If our function requires more than one line of code, we put all the lines of code between curly braces {...} .

Note that a function does not have to return a single numeric value. We could make our logistic()  function return a
list of values containing the evalution of the function as well as the values of, say, the arguments a  and b  which were
used:

# here we name each argument
logistic(x = 1/2, a = -2, b = -3/2)

# here we do not name the arguments
logistic(1/2,-2,-3/2)

# named arguments, given in a different order
logistic(a = -2, b = -3/2, x = 1/2)

# unnamed arguments supplied in this order give a different result
logistic(-2,-3/2,1/2)

logistic <- function(x,a=0,b=1){ # enclose commands in "curly" braces {}
  
  ex <- exp(a + b*x) # make a preliminary calculation
  val <- ex/(1+ex) # finish the calculation and store the result in "val"
  return(val) # explicitly tell the function to return this value
  
}

logistic(1)



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 6/16

$val
[1] 0.7310586

$a
[1] 0

$b
[1] 1

If we donʼt include a return()  command at the end of the function, the function will return the last evaluated object. It
seems good practice to include the return()  function so that it is very clear to others reading the code what is being
returned by the function. Note: As soon as a return()  command is encountered, the function will return and “exit” the
function, so it will not execute any commands a�er it executes a return() .

Conditional programming

We will be able to make much more interesting functions if we know how to do conditional programming, that is, if we
know how to write code which will execute di�erent actions depending on some criteria.

Weʼll begin exploring conditional programming outside the context of defining functions, and one we have learned a
couple of things, we will define some more interesting functions which use conditional programming.

In the following, in order to make the examples interesting, I have used a few functions we have not yet discussed: The
function Sys.Date()  which returns the current date; the function format() , which can be used to print dates in
specified formats; the function substr()  which can extract a sub-string of characters from a character string; the
function cat()  which prints text to the console without skipping to a new line; and the function sample()  which can
be used to draw entries randomly from a given vector of values. Consult the help on any of these functions if the
following code becomes confusing.

First we consider a simple if/then program. We want to check if a condition is satisfied, and if it is, we want to execute
some action. Here is an example:

logistic <- function(x,a=0,b=1){
  
  ex <- exp(a + b*x) 
  val <- ex/(1+ex) 
  
  output <- list(val = val,
                 a = a,
                 b = b)
  
  return(output)
  
}

logistic(1)

if/then



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 7/16

The above code asks if today is my birthday, and if it is it prints a message stating the fact; otherwise nothing happens. If
we want to execute more actions when the condition is satisfied, we can put these as separate lines of code between
curly braces {...}  a�er the if()  statement:

[1] "It is your birthday. Your lucky number this year is 4."

Now, if it is your birthday, you are given a randomly generated lucky number, presumably to guide your steps in the
coming year; otherwise nothing happens.

If we wish to give some other instructions for what should happen when the condition is not satisfied, we can use if/else
conditional programming. Here is an example of how to do this in R:

[1] "Sorry, today is not your birthday."

We do not need to stop at only two possible actions. It is possible to set up a sequence of conditions which are checked,
in order, such that each one will execute if the condition is true, until the last one, which executes if none of the previous
conditions was true. Here is an example:

my_birthday <- "01/15"
today <- format(Sys.Date(),"%m/%d")
if(today == my_birthday) print("It is your birthday.")

my_birthday <- "08/28"
today <- format(Sys.Date(),"%m/%d")
if(today == my_birthday){
  
  lucky_number <- sample(1:12,1)
  print(paste("It is your birthday. Your lucky number this year is ",lucky_number,".", sep = "
  
}

if/else

my_birthday <- "01/15"
today <- format(Sys.Date(),"%m/%d")

if(today == my_birthday){
  
  lucky_number <- sample(1:12,1)
  print(paste("It is your birthday. Your lucky number this year is ",lucky_number,".", sep = "
  
} else {
  
  print("Sorry, today is not your birthday.")
  
}

if/else-if/…/else



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 8/16

[1] "Sorry, it is not your birthday and your birthday is not this month."

Now the code asks if it is your birthday; if so, it performs some actions. If it is not your birthday, it will check if your
birthday is this month; if so, it will print a message stating the fact. If it is not your birthday and it is not your birthday
month, then it will print a message stating the fact.

If there are a large number of conditions to check, a cleaner way write the program is to use the switch()  function. The
code below gives messages pointing out some “silver lining” for those whose birthday is not in the current month.

my_birthday <- "01/15"
today <- format(Sys.Date(),"%m/%d")
today_month <- format(Sys.Date(),"%m")

if(today == my_birthday){
  
  lucky_number <- sample(1:12,1)
  print(paste("It is your birthday. Your lucky number this year is ",lucky_number,".", sep = "
  
} else if(today_month == substr(my_birthday,1,2)){
  
  print("Today is not your birthday, but your birthday is this month.")
  
} else {
  
  print("Sorry, it is not your birthday and your birthday is not this month.")
  
}

switch

my_birthday <- "01/15"

today <- format(Sys.Date(),"%m/%d")
today_month <- format(Sys.Date(),"%m")

if(today == my_birthday){
  
  lucky_number <- sample(1:12,1)
  print(paste("It is your birthday. Your lucky number this year is ",lucky_number,".", sep = "
  
} else if(today_month == substr(my_birthday,1,2)){
  
  print("Today is not your birthday, but your birthday is this month.")
  
} else {
  
  cat("Sorry, your birthday is not this month, but ")
  switch(as.numeric(substr(my_birthday,1,2)), # get birthday month as a number
         cat("January is nice and wintry."),



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 9/16

Sorry, your birthday is not this month, but January is nice and wintry.

Functions involving conditional programming

It is very simple to use conditional programming statements inside a function. We use the same syntax as above.

As an example, we may wish to define a function to evaluate the piecewise-defined “triangle” function

Here is how we can do it:

         cat("February is not a bad month for a birthday."),
         cat("at least in March you get Spring Break."),
         cat("April is always good."),
         cat("wildflowers should be blooming in May."),
         cat("June birthdays are always a good time."),
         cat("in July you can celebrate at the beach."),
         cat("August will come soon enough."),
         cat("September birthdays are lucky."),
         cat("October is nice and autumnal."),
         cat("in November you'll get Thanksgiving break."),
         cat("December is everyone's favorite month."))
  
}

triangle <- function(x){
  
  if( (x >=-1) & (x < 0) ){
    
    val <- 1 + x
      
  } else if( (x >= 0) & (x < 1) ){
  
    val <- 1 - x
  
  } else {
    
    val <- 0
    
  }

return(val)

}

triangle(1)

O

Ä



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 10/16

[1] 0

[1] 1

[1] 0.5

[1] 0.5

With our function defined as it is, we will run into trouble if we try to evaluate it on a vector:

Error in if ((x >= -1) & (x < 0)) {: the condition has length > 1

The problem is that if()  can only accept a single logical value. What is happening is that when we feed a vector into our
triangle()  function, the first condition, which is (x >=-1) & (x < 0) , results in a vector of TRUE  or FALSE  values,
and if()  cannot handle this.

A way around this is to apply the triangle()  function to each value in the vector x  separately, without feeding the
whole vector x  into the function at once. This can be done with the sapply()  function. The documentation for
sapply()  is somewhat intimidating, but here is how we can use it:

 [1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
[20] 0.9 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[39] 0.0 0.0 0.0

These are the desired function evaluations. Now we may make a plot of the triangle()  function:

triangle(0)

triangle(1/2)

triangle(-1/2)

x <- seq(-2,2,by = .1)
triangle(x)

sapply(x,triangle)

plot(sapply(x,triangle)~x,type = "l")



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 11/16

It is o�en possible to bypass some of the tedium of progamming piecewise functions by taking advantage of the fact that
logical vectors are coerced to numeric vectors by arithmetic operations. We can, for example, write a function equivalent
to the triangle()  function as follows (study it closely!):

triangle2 <- function(x) ((x >=-1) & (x < 0))*(1 + x) + ((x >= 0) & (x <= 1))*(1 - x)
x <- seq(-2,2,by = .1)
plot(triangle2(x)~x, type = "l")



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 12/16

The nice thing about triangle2()  is that it can be evaluated on a vector, so we do not need to use sapply()  to
evaluate it on each entry of x  separately.

The ever-handy ifelse() function

Suppose I want to evaluate a condition for each entry of a vector and return one of two values depending on whether the
entry meets a condition. For example, I want to evaluate scores as a “pass” or a “fail”, where a “pass” is earned by a score
greater than or equal to 70. This could be done as follows:

# some scores
scores <- c(75.7, 64.1, 88.4, 59.2, 86.9, 67.5, 83.8, 86.6, 73.1, 65.2)

# a function to decide whether a score is a pass or fail
pf <- function(score){
  
  if(score >= 70){
    
    val <- "pass"
  
  } else {
    
    val <- "fail"
    
  }
  



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 13/16

 [1] "pass" "fail" "pass" "fail" "pass" "fail" "pass" "pass" "pass" "fail"

The ifelse()  function provides a much easier way to perform the above. It evaluates a condition on each entry of a
vector and returns a vector of equal length with each entry equal to one or the other of two provided values:

 [1] "pass" "fail" "pass" "fail" "pass" "fail" "pass" "pass" "pass" "fail"

Practice

Practice writing code and anticipating the output of code with the following exercises.

1. Write an R function to evaluate the so�-thresholding function

at any  for a user-specified . Write the function so that the default value for  is  and so that it can be
evaluated when a numeric vector is given for  and a single value is given for . For , the function looks like
this:

  return(val)
  
}

# to find which scores are passing and failing, we must "sapply()" the function to the vector:
sapply(scores,pf)

ifelse(scores >= 70, "pass","fail") # "pass" if TRUE, "fail" if FALSE

Write code



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 14/16

2. Write a function which, given a vector x , returns the middle value of x  if x  has an odd number of entries but
returns the midpoint between the middle two values of x  if x  has an even number of entries (this is one way to
define the median).

3. Write a function giving the roots of the polynomial  when a real root exists; if a real root does
not exist, make the function print a message to the console communicating this.

4. Write a function which takes two vectors x  and y  containing the values of two random samples  and
 and returns a list containing the the two sample sizes  and , the two sample means  and , the

two sample variances  and , the pooled sample variance

and the test statistic of the pooled-variance two-sample t-test

Try to understand exactly what the following code chunks are doing.

1. 

Read code



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 15/16

2. 

3. 

4. 

expcdf <- function(x) (1 - exp(-x))*(x > 0)
plot(expcdf,xlim = c(-1,4),ylab = "cdf",xlab = "x")

today <- Sys.Date()
dow <- weekdays(today) # weekdays() function pulls the weekday from a date
wkdays <- c("Monday","Tuesday","Wednesday","Thursday","Friday")

if(any(dow == wkdays)){
  
  print("Keep working.")
  
} else {
  
  print("Take a break.")
  
}

rg <- function(x){
  
  n <- length(x)
  x <- sort(x)
  val <- x[n] - x[1]
  
  return(val)
  
}

x <- c(3,8,2,-3,7,-9)
rg(x)

trm <- function(x,alpha){
  
  n <- length(x)
  x <- sort(x)
  tr <- floor(alpha*n)
  
  l <- tr + 1
  u <- n - tr
  
  val <- mean(x[l:u])
  
  return(val)
  
}



8/28/25, 12:53 PM Defining functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_functiondef.html 16/16

x <- c(-5,9,-9,-1,1,7,11,5,3,-7,-3)
trm(x,0.1)


