
9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 1/12

The for loop is the bread and butter of the computer programmer! Very little can be accomplished without for loops, and
knowing how to use them is essential to literacy in this, the Age of the Computer.

Writing a for loop

Think of the functions sum() , mean() , sd() , var() , min() , max() , and median() , which we have already
introduced. These functions are all based on for loops; they have for loops running deep down inside of them some more
e�icient programming language like C or Fortran, which are closer to the very 0s and 1s of your computer machine than R
is. R provides many functions designed to help us save time, so we donʼt in practice have to roll up our sleeves and code
loops to compute these simple statistics; however, it will be worthwhile to study how these functions depend on the for
loop, as in the remainder of the course we will find many more applications of for loops.

Letʼs start with the sum() function. This function takes a numeric vector and adds up all of its entries.

[1] -0.2

Nice. But what is actually going on inside the function? Suppose we have to add up the entries in x . How would we do it?
A typical brain would do it by adding them one at a time and keeping track of the cumulative sum. Well, this can be done
with a for loop.

A for loop is a program which is executed a number of times making use of an index which is typically updated in each
execution. Most o�en the index is an integer increasing by one a�er each execution.

In R the syntax of the for loop takes the form: for(<index> in <values>){<commands>} .

We can compute the sum of the entries in a numeric vector with a for loop in R as follows:

[1] -0.2

For loops

Karl Gregory
AUTHOR

Computing a sum

x <- c(0.5, 1.3, -1.7, 0.6, 0.1, -1.8, -0.5, -0.6, 0.6, 1.3)
sum(x)

n <- length(x) # get the number of entries of x
val <- 0 # initialize the sum at 0
for(i in 1:n){

 val <- val + x[i] # increment the sum by entry i of x

}
val

 R > For loops 

00.990

https://gregorkb.github.io/compstat/R_running.html
https://gregorkb.github.io/compstat/R_forloop.html

i

for finden in indexvaluf

Commands

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 2/12

In the for loop above, the index i will begin at 1 , then change to 2 , then change to 3 , and so on until it reaches n , the
length of the vector x . For each value of i the command val <- val + x[i] is executed, so that a�er the last time,
when the loop stops, val will be equal to the sum of the entries in x .

The index need not be integer-valued. Another way to perform the above is:

[1] -0.2

It is more typical to use an integer valued index, so I personally prefer the first way of writing the loop (even though one
needs first to ask for the length of the vector x).

Letʼs put our loop inside a function:

[1] -0.2

If we want to define our own mean function, we just need to use our sum function:

[1] -0.02

[1] -0.02

val <- 0
for(x0 in x){

 val <- val + x0

}
val

my_sum <- function(x){

 n <- length(x)
 val <- 0
 for(i in 1:n){

 val <- val + x[i]

 }

 return(val)

}

my_sum(x)

my_mean <- function(x) my_sum(x) / length(x)
my_mean(x)

mean(x) # gives the same value

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 3/12

Some of the AI chatbots were recently struggling to answer the question of how many times the letter “r” occurred in the
word “strawberry”. It appears to be fixed in ChatGPT now. Below is a for loop which counts this. It looks at each character
and adds 1 to the count if the character is “r”:

[1] 3

Note that if the loop only executes one line of code in each iteration, we do not need to put the line in curly braces!

It turns out one can write as

We can use a for loop to find the th term in the sequence:

[1] 0.7848982

[1] 0.7853982

If we want to make a plot of the series to study its convergence, we can modify our function:

Counting characters in a string

ch <- "strawberry"
n <- nchar(ch) # get the number of characters in the string
nr <- 0 # start the count at zero
for(i in 1:n) nr <- nr + (substr(ch,i,i) == "r") # add 1 if character i is "r"
nr

Adding up terms in a series

lpi <- function(n){ # lpi after Leibniz

 val <- 0
 for(i in 1:n) val <- val + (-1)^(i+1) / (2*i - 1)

 return(val)

}

lpi(500)

pi/4

lpiseq <- function(n){ # lpi after Leibniz

 val <- numeric(n)
 val[1] <- 1
 for(i in 2:n) val[i] <- val[i-1] + (-1)^(i+1) / (2*i - 1)

 return(val)

i 1,2 3

EH

it

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 4/12

Do you recall our earlier struggle with having defined a function with conditional statements which could not be
evaluated on a vector?

Here was one such case:

}
plot(lpiseq(50),type = "l",xlab = "n",ylab = "")
abline(h = pi/4,lty = 3)
legend(x = 1,
 y = 1,
 legend = c("Approximation","\u03c0/4"),
 lty = c(1,3),
 bty = "n")

sapply() is just doing a for loop

some scores
scores <- c(75.7, 64.1, 88.4, 59.2, 86.9, 67.5, 83.8, 86.6, 73.1, 65.2)

a function to decide whether a score is a pass or fail
pf <- function(score){

 if(score >= 70){

 val <- "pass"

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 5/12

We wanted to evaluate the pf() function on each entry of the vector scores , but we get

Error in if (score >= 70) {: the condition has length > 1

because if() can only accept single values, not vectors.

Our solution had been to use the sapply() function in this situation to evaluate the function pf() on each value in the
vector scores separately. The result is

 [1] "pass" "fail" "pass" "fail" "pass" "fail" "pass" "pass" "pass" "fail"

We can do the same with for loops, now that we know how to use them. Here is how:

 [1] "pass" "fail" "pass" "fail" "pass" "fail" "pass" "pass" "pass" "fail"

The above is exactly what the sapply() function is doing. In some situations, it will be necessary to use a for loop as
above, but if sapply() can be used, it will most likely be computationally faster, since the sapply() function can use
the computerʼs memory more e�iciently than Rʼs for loop can (this is anyway standard lore and standard advice).

Nested for loops

O�en there is occasion for nesting one loop inside another! We discuss two examples:

 } else {

 val <- "fail"

 }

 return(val)

}

pf(scores)

sapply(scores,pf)

n <- length(scores)
passfail <- numeric(n) # create empty vector in which to store the pass/fail decisions

now run a for loop:
for(i in 1:n){

 passfail[i] <- pf(scores[i])

}

passfail

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 6/12

Suppose we want to evaluate the function for and over a grid of
 values so we can make a plot. We can fix a grid of values and a grid of values and use nested loops to fill in a

table (a matrix) with the evaluations of the function at the grid points. This can then be used for plotting:

Evaluate a bivariate function over a grid of points

f <- function(x,y) sin(x)*x*(1-y^2) # define the function

gs <- 30 # specify the "grid size"
x <- seq(0,pi,length = gs) # create x grid points
y <- seq(-1,1,length = gs) # create y grid points

z <- matrix(0,gs,gs) # create empty matrix to store function evaluations
for(i in 1:gs)
 for(j in 1:gs){

 z[i,j] <- f(x[i],y[j])

 }

par(mar=c(1.1,1.1,1.1,1.1)) # make a 3d plot with the persp() function
persp(x,y,z,
 theta = 30,
 phi = 30,
 ticktype = "detailed",
 cex.axis = 0.8,
 expand = 0.5,
 border = rgb(.545,0,0),
 zlab = "f(x,y)",
 box = F)

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 7/12

We could also use a double for loop to compute a Riemann sum to approximate the volume under this function over the
region and . Given sequences and , where
adjacent values in each sequence are separated by some , the Riemann sum (using le� endpoints) is given by

[1] 4.188679

d <- 0.01 # set the resolution of the Riemann sum
x <- seq(0,pi,by = d) # construct x grid
y <- seq(-1,1,by = d) # construct y grid

val <- 0
for(i in 1:length(x))
 for(j in 1:length(y)){

 val <- val + f(x[i],y[j])

 }

val <- val * d**2
val

f Xy X sinlx 1 y for E 0,14

y 1,1

gg

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 8/12

The result is close to the true integral

It is worth noting that R has a shortcut way of implementing the nested for loops in this example. We can use the
outer() function to evaluate a function at every combination of a value from a vector x and a vector y (which will
cause R to run nested for loops deep in its bowels). Here is how we could compute the Riemman sum in just a couple of
lines of code by using the outer() function and the sum() function:

[1] 4.188679

Sorting a vector one step at a time is not as trivial as it may sound. To understand the steps, it helps to make some props
for yourself: Number some small shreds of paper with the numbers one through ten and place them in random order in
front of you. You can sort them in increasing order as follows: Starting with the paper on the far le�, compare it with the
one immediately to the right of it. If the paper on the le� has a higher value than the paper to its right, swap the locations
of the papers; otherwise donʼt. Now, still focusing on the paper on the far le�, compare it with the paper two places to the
right; if the le�most paper has a higher value than this one, swap the locations of the papers (otherwise donʼt). Now
compare the le�most paper with the paper three places to the right, swap or donʼt swap accordingly, and so on until you
have made a comparison between the le�most and the rightmost paper. At this point you will have the minimum value
placed le�most. Now do the same to find the second smallest value: disregard the minimum, which has already been
found, and begin making comparisons and position swaps as before, focusing now on the paper which is second to
le�most. Continue this and you will end up with the sorted vector.

This can all be achieved with a double for loop:

z <- outer(x,y,FUN = f) # we just need to have our x and y grids set up
sum(z*d^2)

Sorting a vector

my_sort <- function(x){

 n <- length(x)
 for(i in 1:(n-1))
 for(j in (i+1):n){

 if(x[i] > x[j]){

 tmp <- x[i] # make the swap by temporarily storing one of the values in a variable cal
 x[i] <- x[j]
 x[j] <- tmp

 }

 }

 return(x)

}

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 9/12

 [1] -1.8 -1.7 -0.6 -0.5 0.1 0.5 0.6 0.6 1.3 1.3

Note that functions like min() , max() , and median() all depend on sorting a numeric vector.

Why learn about for loops in R?

For most of the examples in this note, one does not actually need to write a for loop in R to get the desired result, because
R has a built-in function, like the sum() or the sort() function. So why are we learning about loops? Well, for two
reasons:

1. So many basic operations, like sum() , require R to run a loop somewhere “deep inside your computer”. In fact,
when functions like sum() or sort() are executed, R makes calls to functions written in languages like Fortran or
C, which can more e�iciently use the computerʼs memory when running loops (I think of these languages as being
closer to the 0s and 1s which make up the computerʼs native tongue). Since for loops are hiding behind so many of
the functions we use, it is important (and satisfying!) to understand them.

2. There are situations when you really do need loops in R. One example is running Monte Carlo simulations, which we
will cover later. So it is important to learn how to write and understand for loops.

Practice

Practice writing code and reading code with the following exercises.

1. Write a function to compute the sample variance of a random sample
 given in a numeric vector x . Use for loops to compute sums.

2. Write a function which uses a loop to count the number of words in the character string below:

x <- c(0.5, 1.3, -1.7, 0.6, 0.1, -1.8, -0.5, -0.6, 0.6, 1.3)
my_sort(x)

Write code

chstr <- "
 If we shadows have offended,
 Think but this, and all is mended,
 That you have but slumber’d here
 While these visions did appear.
 And this weak and idle theme,
 No more yielding but a dream,
 Gentles, do not reprehend.
 If you pardon, we will mend.
 And, as I am an honest Puck,
 If we have unearnèd luck
 Now to ’scape the serpent’s tongue,
 We will make amends ere long;
 Else the Puck a liar call.
 So, good night unto you all.

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 10/12

3. Write a for loop which computes the first 30 values in the Fibonacci sequence. The first two numbers of the sequence
are and ; values a�er this are obtained as the sum of the two preceding values.

 [1] 0 1 1 2 3 5 8 13 21 34
[11] 55 89 144 233 377 610 987 1597 2584 4181
[21] 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229

4. Suppose you borrow an amount at annual interest rate , compounded monthly, and you make monthly
payments in the amount . If is the amount you owe at the beginning of month , the amount you owe at the
beginning of month is given by

Write a for loop to compute the amount you will owe a�er making monthly payments in the amount on a
loan of at annual interest rate , compounded monthly.

5. The binary numbering system represents numbers as sequences of s and s. For example is equivalent to
the number twenty two, represented as 22 in the decimal system. The decimal system represents whole numbers as
sequences of digits, say , where each digit is a number , such that the sequence

 represents the number

So the decimal system represents the number twenty two as

In binary, numbers are represented as sequences of binary digits , where each is a number or .
The sequence represents the number

So the binary system represents the number twenty two as

Write a function which takes a character string such as (you can assume the string begins with a) and
returns the number it represents in decimal representation.

1. Figure out what this function is computing:

 Give me your hands, if we be friends,
 And Robin shall restore amends."

Read code

ncm <- function(n,m){

 if(m > n) return(0)
 if(m == 0) return(1) # note that after a conditional return(), we don't need an "else", beca

 val <- 1
 for(i in 1:m){

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 11/12

[1] 455

2. Study the following code carefully and describe what it is doing.

 exam1 exam2 final
[1,] 20 23 19
[2,] 21 24 22
[3,] 23 13 18
[4,] 20 20 21

 val <- val*(n-i+1)/i

 }

 return(val)

}

ncm(15,3)

exams <- matrix(c(20,23,19,
 21,24,22,
 23,13,18,
 20,20,21),nrow = 4,byrow = T)
colnames(exams) <- c("exam1","exam2","final")
exams

exr <- function(x){

 if((x[1] < x[3])|(x[2] < x[3])){

 if(x[1] <= x[2]){

 x[1] <- x[3]

 } else {

 x[2] <- x[3]

 }

 }

 return(x)

}

exams_new <- exams
for(i in 1:nrow(exams)){

 exams_new[i,] <- exr(exams[i,])

9/2/25, 12:49 PM For loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_forloop.html 12/12

 exam1 exam2 final
[1,] 20 23 19
[2,] 22 24 22
[3,] 23 18 18
[4,] 21 20 21

3. Try to figure out what the plot will look like before running the code:

4.

}

exams_new

plot(NA,
 asp = 1,
 bty = "n",
 xaxt = "n",
 yaxt = "n",
 xlab = "",
 ylab = "",
 xlim = c(-1,1),
 ylim = c(-1,1))

n <- 8
th <- seq(0,2*pi,by=2*pi/n) - pi/n
for(i in 1:n){

 th_poly <- seq(th[i],th[i+1],by=pi/180)
 x_poly <- c(0,cos(th_poly))
 y_poly <- c(0,sin(th_poly))

 polygon(x_poly,y_poly,col=i)

}

nlk <- function(n){

 val <- 3
 for(i in 1:n) val <- val + 4*(-1)^(i+1)/((2*i)*(2*i+1)*(2*i+2))

 return(val)

}
sapply(1:20,nlk)

