

for loop

for index in indexset

Commands

I

while loop when
you don't know how many iterations

you need

while condition is true

Commands

Amortization schedule

Bo amount borrowed

r annual rate of interest

p monthly payment

B B I E p

amount you owe after 1 month

But B E p

Newtons Method f X

u

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 1/7

The while uses the same logic as the for loop, but it is for the special situation in which one does not know how many
times one will need to execute the commands inside the loop. When would this be the case?

It turns out that in statistics this is very o�en the case. Many estimators in statistics are computed as the minimizers or
maximizers of complicated functions involving observed data; in many cases it is not possible to compute the minimizers
or maximizers according to any formula. One must instead search for the minimizer or maximizer with what are called
numerical methods. These usually involve selecting an arbitrary initial guess and then making updates to the guess in
such a way that one can guarantee that the guess will approach the minimizer or maximizer eventually. In this situation,
the number of times one will need to update the initial guess before it can be considered close to converging upon its
target is unknown before one begins making the updates. So come convergence criterion is specified to stop the iteration
at some point.

Before diving into an example of this, letʼs learn the syntax of the while loop.

The syntax of a while loop takes the form while(<condition>){<commands>} . As long as the condition is TRUE , the
commands will keep executing. One must be careful with while loops, because if you write a condition which is always
TRUE , the loop will never stop; you will have to terminate your R session in order to make it stop!

While loop for computing a sum

Recall our for loop for computing a sum:

[1] 116.79

We can rewrite this as a while loop in this way:

While loops

Karl Gregory
AUTHOR

x <- c(16.10, 11.86, 14.95, 8.84, 17.03, 11.65, 8.64, 10.52, 10.68, 6.52)
n <- length(x)
val <- 0
for(i in 1:n){

 val <- val + x[i]

}
val

n <- length(x)
val <- 0
i <- 1
while(i <= n){

 val <- val + x[i]
 i <- i + 1

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 2/7

[1] 116.79

In the above, the commands in the curly braces {...} are executed as long as the index i is less than or equal to n ,
and we explicitly increment the index, i <- i + 1 as part of our commands. The loop goes through all the same steps.
If we forget to increment i the loop will never stop!

The above example does not properly show the value of the while loop, which is, as we have said, that it can be sent
looping without being told ahead of time how many iterations it will have to loop. Letʼs look for a more compelling
example of its usefulness!

While loop for division with a remainder

Another useful application of the while loop is to perform division. Regarding division as repeated subtraction, we can
use the while loop to count how many times a divisor can be subtracted from a dividend (the dividend is the number to
be divided). That is, if we want to do the division , we can use a while loop to see how many times we can subtract

 from .

$quotient
[1] 10

$remainder
[1] 6

}
val

function to perform division and give the remainder
divr <- function(D,x){

 Q <- 0 # this will be the quotient
 while(D >= x){# as long as we can still subtract x from D...

 D <- D - x
 Q <- Q + 1

 }

 output <- list(quotient = Q,
 remainder = D) # the remainder is what is left of D

 return(output)

}

demonstrate
divr(D = 126, x = 12)

divr(D = 1024, x = 16)

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 3/7

$quotient
[1] 64

$remainder
[1] 0

While loop for amortization

Suppose you borrow an amount of money at monthly interest rate and pay it o� with monthly payments in the
amount . If you make the first payment a�er one month has passed, you will, a�er making this payment, owe the
amount , and the amount of money you will owe a�er the th payment is given by the recursion

for How many months will it take to pay o� the loan? We can write a while loop to answer this question.

[1] 196

The above loop executes the commands in {...} as long as the remaining balance B is greater than zero. The last
payment will make the balance equal to or less than zero and the loop will stop.

For the record, if is the number of months needed to pay o� the loan, we can compute directly by using “straight-
up math” with the formula

where represents the smallest integer greater than or equal to . See:

[1] 196

So the while loop is not really necessary for solving this problem. It is, however, needed for the next example.

B <- 200000 # amount borrowed, yikes!
r <- 0.05/12 # 5% annual interest rate. Divide by 12 to get monthly rate.
p <- 1500 # payments of 1000

m <- 0 # initialize month counter to 0
while(B > 0){

 B <- B*(1 + r) - p
 m <- m + 1

}
number of months it will take to pay off this loan:
m

B <- 200000 # amount borrowed
m <- ceiling(log(p/(p - r*B))/log(1+r))
m

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 4/7

While loop for Newtonʼs method

Newtonʼs method, also known as the Newton-Raphson algorithm, is an algorithm for finding a root of a function,
i.e. where the function is equal to zero. Let denote a root of a function so that . Newtonʼs method for finding

 is to choose an initial guess for and make the updates

for , where is the derivative of . Under certain conditions the sequence will converge to (to learn
about when it might not work, see Section 4.9 of Stewart (2003)).

Suppose a car salesman o�ers to sell you a car for a certain amount in cash or for a numb of monthly payments of a
certain amount. You would like to know what monthly interest rate you would be charged if you choose to make the
monthly payments. Consulting your financial math notes, you find that paying o� an amount with monthly
payments of amount , you end up paying a monthly interest rate equal to , which is given by the solution to the
equation

The code below uses a while loop to implement Newtonʼs method for finding the root .

[1] 0.006183413

Finding the interest rate

P <- 20000
p <- 400
n <- 60
f <- function(r,n,P,p) P/p*(1 + r)^n*r - (1+r)^n + 1
df <- function(r,n,P,p) P/p*(n*(1 + r)^(n-1)*r + (1+r)^n) - n*(1+r)^(n-1)

r <- 0.05 # initial guess for the monthly interest rate
conv <- FALSE # initialize this as false so that loop can begin
while(!conv){ # commands will execute as long as it has not converged

 r0 <- r # store the current value before updating it
 r <- r - f(r,n,P,p)/df(r,n,P,p) # this is the Newton update

 conv <- abs(r - r0) < 1e-5 # convergence criterion

}

the converged value
r

convert monthly interest rate to annual interest rate
r*12

f r n itr r Hr n itn

Hr

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 5/7

[1] 0.07420096

In the above, we define , , and according to the given numbers. Then we define two functions, f() which is the
function of which we want to find the root and df() which is , the derivative of .

The loop executes the commands inside {...} as along as !conv is TRUE , that is as long as conv is FALSE . So we
could read this as “while not converged, do such and such”. Inside the curly braces, we see that the current value of r is
stored in r0 . This is so that we can compare the updated r with its previous value; note that our update overwrites r
with a new value, so if we did not save the value of r somewhere we would lose it. This comparison is part of our
convergence criterion. If the update changed r by an amount less that 1e-5 , which is , then conv is set
equal to TRUE which will cause the loop to stop executing.

Below is a plot of the function f defined in the code. The plot shows that Newtonʼs algorithm was able to find the root.

Practice

rseq <- seq(0,0.01,length = 200)
plot(f(rseq,n,P,p)~rseq,type = "l",
 xlab = "r",
 ylab = "f(r)")
abline(h = 0, lty = 3)
abline(v = r, lty = 2)
axis(side = 3, at = r, labels = round(r,6))

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 6/7

Practice writing code and reading code with the following exercises.

1. Leibniz is credited with discovering that we can express the value as the infinite series

We can obtain an approximation to by adding up a large number of terms in the sum. Write a function which adds
terms in the series until the result is within a user-specified distance of the value . Write the function so
that it returns a list containing the approximation to as well as the number of terms that were required to obtain
the approximation.

2. Suppose you invest an amount in an investment fund which yields an annual interest rate of and you
contribute to the fund an additional amount at the end of each month. Basing calculations on monthly
compounded interest, if the value of your investment at the beginning of month is , the value at the beginning
of month may be calculated as

Write a loop which tells you how many months it will take for you to have accumulated a specified goal amount.
Your function will take as arguments the initial investment, the interest rate, the size of the monthly contribution,
and the goal amount.

3. An algorithm for obtaining an approximation to the square root of a number is to make an initial guess and
update the guess according to the recursion

“until convergence”, meaning until the update from to becomes small enough to be negligible. Write a
function which takes the argument as well as an argument for specifying some tolerance, say , such that the

updates will stop when . Your function should return the approximation to as well as the
number of iterations it took for the algorithm to converge. You can think up your own way of choosing the initial
guess at which to begin the algorithm. Try your function out and see how it compares to the built-int sqrt()
function.

1. Anticipate the output of the code below:

Write code

Read code

ctbin <- function(a){

 n <- 2^a
 M <- matrix(0,n,a)
 for(i in 0:(n-1)){

 m <- i
 j <- 0
 while(m > 0){

9/4/25, 9:29 AM While loops – Computing in Statistics

https://gregorkb.github.io/compstat/R_whileloop.html 7/7

2. Explain what the following code does.

[1] 7409

 M[i+1,a - j] <- m %% 2
 m <- floor(m / 2)
 j <- j + 1

 }
 }

 return(M)

}

ctbin(3)

my_ini <- "KBG"
ini <- "AAA"
i <- 0
while(ini != my_ini){

 ini <- paste(sample(LETTERS,3,replace = F),collapse="")
 i <- i + 1

}
i

References

Stewart, James. 2003. Calculus Early Transcendentals, 5e. Brooks/Cole–Thomson Learning.

