
9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 1/17

R has many built-in functions for generating realizations of random variables and evaluating probability mass/density
functions (pmfs/pdfs), cumulative probability functions (cdfs), and quantile functions.

Random number generation

Before introducing these functions, we wish to comment briefly on the idea of generating random numbers from a
computer. It is actually not possible to generate numbers truly at random from a computer (we might ask whether it is
possible by any means at all to generate random numbers, but we will not stray this far into the philosophical). A
computer program will produce output based deterministically on an input, meaning that once the input is known, the
output is known. If one can generate a random input, then one can retrieve from a computer a sequence of numbers
corresponding to this input: such an input is called a seed, and the numbers generated based on the seed can be
regarded as pseudo-random numbers. Once a seed is fixed, the sequence of pseudo-random numbers a computer will
produce is also fixed. Some so�ware will set the seed according to the exact time of day that the so�ware began running,
so that each time a user runs the so�ware, di�erent sequences of pseudo-random numbers will be produced.

Many careers have been spent on coming up with better ways to make a computer construct sequences of numbers,
based on a seed, which will satisfy tests of randomness. The principal aim has been to generate a sequence of numbers
which act like independent realizations from the uniform distribution on the interval . We can retrieve such
sequence in R with the runif() function:

 [1] 0.9308787077 0.4566190194 0.3423241214 0.1388481127 0.5347049315
 [6] 0.3907967699 0.2695951485 0.1702047708 0.3698448180 0.0007702245
[11] 0.7132399790 0.0772755996 0.9763683723 0.9537657339 0.7771071785
[16] 0.5586855146 0.8333425578 0.3559388467 0.2689520475 0.3119368011
[21] 0.2071755244 0.8089807765 0.1426891489 0.6624902359 0.2159810779
[26] 0.0204272333 0.0310420173 0.2935617536 0.4668650182 0.6845511305
[31] 0.2843407975 0.9921871182 0.3674608748 0.2078510467 0.9063579065
[36] 0.6289490701 0.7650181742 0.8604083005 0.5786431504 0.3609595336
[41] 0.4559477731 0.6450185589 0.4616275323 0.4494822051 0.6420732702
[46] 0.5413725451 0.2863077268 0.7698679457 0.4721740680 0.4448345422

Once one has obtained a random realization on the interval , one can transform it into a realization of a random
variable from any other distribution by passing it through the quantile function of that distribution. Specifically, suppose

 is a random variable with cdf given by

Then the quantile function of is given by

Statistics functions

Karl Gregory
AUTHOR

runif(50) # generate 50 pseudo-random Uniform(0,1) realizations

Random genentin

Main goal Generate Uniform 0,1 realizations

i

Random seed
hasdistribution

Say I want to generate F

II P F P o

cdf cumulative dist function

The quantile function an inverse to the adf

4 Fln

probability fdesity

n quantile
functors

IFE.vn
iYEQXQ U

Logistic distribution

a III
n log Em

To generate logistin dist Generate

Un Unit 0,1

Then set X log Eu

dnorm

I.EE

pnorm

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 2/17

where is simply the inverse of when the latter is continuous and strictly increasing. So to generate a
realization of , we generate a realization from the uniform distribution on and set .

For example, to generate a realization of a random variable having the logistic cdf , we can
generate a realization from the uniform distribution on and set , where for

.

When generating realizations of random variables in R, this is what is happening in the background; the generation
begins with the generation of pseudo-random realizations from the uniform distribution on .

The rabbit hole of how such sequences of pseudo-random uniform realizations are generated is very deep, and we will
not peer further into it than we have done in the above paragraphs. If interested see Chapter 2 of Robert and Casella
(2004).

Functions for generating random variables

U <- runif(1000)
X <- log(U/(1-U)) # logistic distribution quantile function

par(mfrow=c(1,2)) # put next two plots side-by-side
hist(U,breaks = 20)
hist(X,breaks = 20)

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 3/17

For each of several di�erent distributions, R provides four functions: one for generating random realizations, one for
evaluating the pmf or pdf (according to whether the distribution is for a discrete or continuous random variable), one for
evaluating the cdf, and one for evaluating the quantile function. These four functions take the form rxxx() , dxxx() ,
pxxx() , and qxxx() , respectively, where xxx is replaced by an abbreviation for a distribution. Here are two examples,
one continuous and one discrete:

normal distribution: rnorm() , dnorm() , pnorm() , and qnorm() .

binomial distribution: rbinom() , dbinom() , pbinom() , and qbinom() .

Each set of functions takes a di�erent set of optional arguments depending on the distribution. For example, for the
normal distribution the mean and standard deviation can be specified and for the binomial distribution the number of
Bernoulli trials and the success probability of each trial can be specified.

To see a list of all the distributions included in R, execute this command:

Here we illustrate using the rnorm() and dnorm() functions:

?distributions

Normal distribution functions

set.seed(1) # you don't need to do this, but if you want to get the same "random" numbers each

rnorm() function to generate random realizations
n <- 1000
mu <- 80
sigma <- 10
X <- rnorm(n,mean = mu,sd = sigma) # specify mean and standard deviation

make a histogram of the realizations
hist(X,freq = F, breaks = 20) # set freq = F so it will have the height of a density

overlay pdf with dnorm() function evaluated at a sequence of x values
x <- seq(mu - 4*sigma, mu + 4*sigma,length=200)
lines(dnorm(x,mu,sigma)~x, col = "blue")

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 4/17

Here we use dnorm() as well as qnorm() to make some cool plots of the standard normal pdf.

make three plots in one row
par(mfrow=c(1,3))

make a sequence of z values
z <- seq(-4,4,length=200)

define some upper quantiles
u <- c(0.05,0.025,0.005)

for each value in u, shade the region between the upper and lower quantiles
for(j in 1:length(u)){

 qu <- qnorm(c(u[j],1-u[j]))
 plot(dnorm(z)~z,
 type = "l",
 ylab = "f(z)",
 bty = "l",
 xaxt = "n",
 yaxt = "n")

 axis(side = 1, las = 2, at = qu, labels = sprintf(qu,fmt="%.3f"))

 x <- c(qu[1],seq(qu[1],qu[2],length=100),qu[2])
 y <- c(0,dnorm(seq(qu[1],qu[2],length=100)),0)
 polygon(x, y, col = "red",border = "NA")

N on

95ist

Öffium
97.5 percentile

11
gnorm 0.975

gnorm
0.025

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 5/17

Here we use the pnorm() function to reproduce this -table from Mohr, Wilson, and Freund (2021):

 text(x = 0, y = 0.5*dnorm(0), label = sprintf(1-2*u[j],fmt="%.2f"), col = "white")

}

cols <- seq(0,0.09,by=0.01)
rows <- seq(0,3.5,by=0.1)

ncols <- length(cols)
nrows <- length(rows)

N o

11.1
pn.im 1.12

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 6/17

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

tab <- matrix(NA,nrows,ncols)
for(i in 1:nrows)
 for(j in 1:ncols){

 z <- rows[i] + cols[j]
 tab[i,j] <- round(1 - pnorm(z),4) # area under the curve to the right of z, rounded to fou

 }

name the columns and rows
colnames(tab) <- cols
rownames(tab) <- rows

tab

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 7/17

Here we illustrate the rbinom() and dbinom() functions.

X
 0 1 2 3 4 5 6 7 8 9
 4 15 33 36 42 34 19 12 3 2

Binomial distribution functions

N <- 200 # draw this many realizations
n <- 20 # number of Bernoulli trials for the Binomial random variable
p <- 1/5 # success probability
X <- rbinom(N,n,p)

the table() function can be useful for summarizing observations of a discrete random variabl
table(X)

x <- 0:n
plot(dbinom(x,n,p)~x,
 bty = "l",
 xlab = "x",
 ylab = "Probability")

points(table(X)/N, col = rgb(1,0,0,.4))

Next two lines help you find coordinates relative to the plotting window.
Useful if you want to position a legend irrespectively of the axes.
xpos <- grconvertX(.4, from="ndc", to = "user") # 40% percent from the left
ypos <- grconvertY(.8, from="ndc", to = "user") # 80% percent from the bottom

legend(x = xpos,
 y = ypos,
 pch = c(1,NA),
 lty = c(NA,1),
 lwd = c(NA,2),
 col = c("black",rgb(1,0,0,.4)),
 legend = c(paste("Binomial(",n,",",p,") probability mass function",sep=""),
 paste("Observed proportion in sample of size ",N,sep="")),
 bty = "n")

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 8/17

Here we illustrate the pbinom() function in a program which makes some plots for visualizing the normal
approximation to the binomial distribution. Recall that for we have

For large , the central limit theorem gives

where the approximation improves as . Now, we would like to use the Normal distribution to approximate the
probabilities , but since the Normal distribution is for a continuous random variable, it will assign probability
zero to any single value . To get around this, we note that for the binomial random variable , which is discrete, we
have

for every integer-valued , so we will approximate the probability with the probability assigned by the
 distribution to the interval . That is, we will use the approximation

where denotes the cdf of the distribution. Likewise, we will approximate the cumulative distribution

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 9/17

function of the distribution as

These approximations improve as .

p <- 1/5 # success probability
nn <- c(10,20,40) # select a few sample sizes

set up plotting so the the plots will appear in a 3 by 2 grid
par(mfrow=c(3,2),
 mar=c(4.1,4.1,1.1,1.1), # adjust the margin of each plot so the plots don't get squished
 oma = c(0,0,2,0)) # make a top outer margin in which to place a legend

loop through the three sample sizes in nn
for(i in 1:3){

 # set sample size for this step in the loop
 n <- nn[i]
 x <- 0:n

 # obtain normal approximations to cdf and pmf
 x_correct <- 0:n + 0.5 # use the continuity correction
 pn <- pnorm(x_correct,n*p,sd = sqrt(n*p*(1-p))) # cdf
 dn <- c(pn[1],diff(pn)) # pmf by differencing. Check ?diff

 # make plots
 plot(dbinom(x,n,p)~x,
 bty = "l",
 xlab = "x",
 ylab = "pmf")

 points(dn~x, col = rgb(0,0,1,.4), type = "h", lwd = 2)

 xpos <- grconvertX(.7,from="nfc",to="user")
 ypos <- grconvertY(.7,from="nfc",to="user")

 text(x = xpos,
 y = ypos,
 labels = paste("n = ",n,", p = ",p,sep=""))

 plot(pbinom(x,n,p)~x,
 bty = "l",
 xlab = "x",
 ylab = "cdf"
)

 points(pn~x, col = rgb(0,0,1,.4), type = "h", lwd = 2)

}

xpos <- grconvertX(.1,from="ndc",to="user")

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 10/17

You may experiment with the qbinom() function on your own!

Practice

Practice writing code and anticipating the output of code with the following exercises.

1. Make a plot like the one below of a gamma distribution pdf. The pdf of the distribution is given by

ypos <- grconvertY(1,from="ndc",to="user")
legend(x = xpos,
 y = ypos,
 horiz = T, # give legend a horizontal orientation
 pch = c(1,NA),
 lty = c(NA,1),
 lwd = c(NA,2),
 col = c("black",rgb(0,0,1,.4)),
 legend = c("Binomial probability",
 "Normal approximation"),
 bty = "n",
 xpd = NA) # xpd = NA is sometimes need to make something appear in the outer margin

Write code

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 11/17

for a shape parameter and a scale parameter ; the expected value of a random variable having this density is
. The gamma distribution functions in R are rgamma() , dgamma() , pgamma() , and qgamma() . Run ?

dgamma() to make sure you understand how to put in the arguments. Choose your own values of the shape and
scale parameters and . Put vertical lines at the mean, the median (the median is the 0.5 quantile of the
distribution), and the mode (the value of for which is greatest) as shown.

2. Make the plot below showing the pdf of the chi-squared distribution for several values of the degrees of freedom
parameter. The chi-squared pdf is given by

where is the degrees of freedom parameter and is the gamma function. The chi-squared pdf can be
evaluated with the R function dchisq() . Write a for loop to put all the curves on the plot (note that you can put
numbers in for col=)!

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 12/17

3. The standard bivariate normal probability density function is given by

where is the correlation parameter. Make a plot like the one below of this function (you will have to
define your own function and evaluate it over a grid of points) with your own choice of the parameter . You can use
the persp() function to create the 3-d plot.

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 13/17

4. Fix some integers , , and , where is large (say at least a thousand). Then generate
samples of size from the distribution and on each sample retrieve the th order statistic—this is
the value appearing in position when the vector is sorted in increasing order. You can do the above with with a for
loop or in some other way. Then make a histogram of these th order statistic values. On top of the histogram,
overlay the pdf of the distribution (can use dbeta() function). For , , and

, my plot looks like this:

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 14/17

1. Explain what this function will do:

2. If are independent random variables, then will have the chi-squared
distribution with degrees of freedom . With this beautiful truth in mind, explain what the following code will do.
What would you write as a comment a�er each line of code to explain what it is doing?

Read code

rdbexp <- function(n,lambda = 3){

 sgn <- sample(c(-1,1),n,replace=T)
 x <- rexp(n,lambda)
 val <- sgn * x
 return(val)

}

df <- 6
S <- 5000
X <- numeric(S)
for(s in 1:S){

 Z <- rnorm(df)
 X[s] <- sum(Z**2)

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 15/17

3. Consider drawing marbles from a bag containing marbles, of which are red, and counting the number of red
marbles you draw. This random number follows a probability distribution called the hypergeometric distribution. If
the number of marbles in the bag is increased to a very large number, and if the number of red marbles is
increased proportionally with , the distribution of the number of red marbles you draw from the bag in your
handful of becomes very close to the binomial distribution with the number of Bernoulli trials equal to and the
success probability given by . Study the code below and see if you can explain what each line is doing. What
would you write if you were to add a comment to each line of code?

 0 1 2 3 4 5
50 0.02507599 0.1492618 0.3256622 0.3256622 0.1492618 0.02507599
100 0.02814225 0.1529470 0.3189108 0.3189108 0.1529470 0.02814225
200 0.02969161 0.1546438 0.3156646 0.3156646 0.1546438 0.02969161
400 0.03046975 0.1554579 0.3140723 0.3140723 0.1554579 0.03046975
800 0.03085962 0.1558567 0.3132837 0.3132837 0.1558567 0.03085962
1600 0.03105475 0.1560540 0.3128912 0.3128912 0.1560540 0.03105475
3200 0.03115236 0.1561522 0.3126955 0.3126955 0.1561522 0.03115236
6400 0.03120118 0.1562011 0.3125977 0.3125977 0.1562011 0.03120118
Inf 0.03125000 0.1562500 0.3125000 0.3125000 0.1562500 0.03125000

4. If is a random sample from a distribution, the Wald-type confidence
interval for is the interval

where , with , and is the upper quantile of the standard normal
distribution. For a given sample size and significance level , the code below computes, over a sequence of values

}

hist(X,freq = F,breaks = 50)
x <- seq(0,30,length=200)
lines(dchisq(x,df)~x,col = "blue")

p <- 1/2
N <- 50*2**(0:7)
M <- floor(N*p)
n <- 5

tab <- matrix(0,length(N),n+1)
for(i in 1:length(N)){

 tab[i,] <- dhyper(0:n,m = M[i], n = N[i] - M[i], k = n)

}

tab <- rbind(tab,dbinom(0:n,n,p))
rownames(tab) <- c(N,Inf)
colnames(tab) <- 0:n
tab

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 16/17

of the exact probability that this interval will contain the true value of . It uses the fact that has the
 distribution. Read the code and try writing a comment for each line to explain what it is doing.

n <- 50
alpha <- 0.05
y <- 0:n
z_val <- qnorm(1-alpha/2)

py <- y/n
spy <- sqrt(py*(1-py)/n)
up <- py + z_val * spy
lo <- py - z_val * spy

p <- seq(0.01,0.99, by = 0.0001)
cp <- numeric(length(p))
for(i in 1:length(p)){

 ind <- (lo <= p[i]) & (up >= p[i])
 cp[i] <- sum(dbinom(y[ind],n,p[i]))

}

plot(cp ~ p,
 type = "l",
 ylab = "coverage probability")
abline(h = 1-alpha, lty = 3)

9/9/25, 1:02 PM Statistics functions – Computing in Statistics

https://gregorkb.github.io/compstat/R_statfunctions.html 17/17

References

Mohr, Donna L, William J Wilson, and Rudolf J Freund. 2021. Statistical Methods. Academic Press.
Robert, C. P., and G. Casella. 2004. Monte Carlo Statistical Methods. Springer Verlag.

