
9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 1/11

Now that we understand loops and can generate realizations of random variables in R, we can learn about Monte Carlo
methods. These are methods which involve generating many random realizations of random variables in order to obtain
approximations to quantities that are very di�icult (or impossible) to compute exactly. Why are they called Monte Carlo
methods? Well, Monte Carlo, in Monaco, was at one time a popular gambling destination, and as gambling typically
involves random number generation, this name was given to methods which involved drawing many realizations of
random variables. Keep in mind that Monte Carlo methods generally will not give exactly the same answer twice!
However, we will find that if they are based on large enough samples of random variables, they can give reliable results.

In this note we will consider Monte Carlo methods for approximating the value of an integral and for approximating the
minimizer (or maximizer) of a function.

Monte Carlo integral approximation

Suppose we want to integrate a function over the interval . That is, suppose we wish to compute

It may be that there is no nice anti-derivative of that we can use to compute the integral exactly. In this case, we can
approximate the integral using a Monte Carlo approach.

One Monte Carlo approach is the so-called hit-or-miss approach. It goes like this: Given a value such that for
all , choose some large and generate independent realizations

Then approximate as

where is an indicator function (so we count how many times we have).

Suppose we wish to integrate the function

over the interval . The R code below obtains an approximation using the Monte Carlo hit-or-miss method:

Monte Carlo methods

Karl Gregory
AUTHOR

Hit-or-miss

Example

 R > Monte Carlo methods 

http://localhost:6821/R_running.html
http://localhost:6821/R_MCmethods.html

Monte Carlo methods for approximately

Integrating a function

Minimizing maximizing a function

Elton

ihm

I gl da

eat so 4.2

S EE dx

M C Hit or miss method

c

i
a b

I clb.at SdfYthHI
Generate Xu Unit a b

Y 4N Unit o c

dot under 3 Y g Xi

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 2/11

[1] 0.555

Wolfram Alpha gives the approximation to this integral. From the picture above, we see that all we are doing is
approximating the proportion of the rectangular area covered by the function and then scaling this by the
total area .

g <- function(x) -2*x*log(x) / log(x + 2)
x <- seq(.001,1, by = 0.001)
gx <- g(x)
plot(gx~x,type = "l",
 ylim = c(0,1.5),
 xlim = c(0,1),
 ylab = "g(x)")

a <- 0
b <- 1
c <- 1.5
N <- 1000
X <- runif(N,a,b)
Y <- runif(N,0,c)
I <- c*(b - a)*mean(Y <= g(X))
points(X,Y,col=ifelse(Y <= g(X),rgb(0,0,.545),rgb(.545,0,0,.3)))

I

https://www.wolframalpha.com/input?i=integrate+-log%28x%29+%2F+log%28x+%2B+2%29+*2*x+from+x+%3D+0+to+1

Classical M.C Integral approx

b

I gexidx
b a gla La dy

a

b a Eg u TherunUnitla

E

Draw U UN Unit a b

EEFIE.IEd.I
b a f g U

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 3/11

Note that we can write

where is a random variable having the distribution (since this has pdf equal to on the
interval). Now, by a result in mathematical statistics called the Strong Law of Large Numbers, the mean of a random
sample can be made arbitrarily close to its expected value if a large enough sample is drawn. So the classical Monte Carlo
approach to approximating this integral is this: For some large , generate independently from the

 distribution. Then approximate the integral as

For the same integral as in the hit-or-miss example, we have:

[1] 0.575542

Monte Carlo optimization

Suppose we wish to find the value of which minimizes a function over an interval . That is, we wish to find

Sometimes it is not possible to use standard calculus methods for finding the minimizer of a function, as the function
may not be di�erentiable or may have many local minima. Such Monte Carlo methods When we are speaking of
minimizing or maximizing a function, this function is o�en referred to as the objective function, so we will use this term.

The most basic way to seek the minimizer of an objective function over an interval is as follows: For some large ,
generate independently from the distribution and then use the approximation

Classical

Example

g <- function(x) -2*x*log(x) / log(x + 2)
N <- 1000
a <- 0
b <- 1
U <- runif(N,a,b)
I <- (b-a)*mean(g(U))
I

Uniform sampling

Example 1

Optimization Minimization Maximization of a function

8H

Fünf

locaTminimum
global minimum

We want a M.C approximation to

argmin g t

E a b

Uniformsam ymethad

Generate Ui Um Unit a b

Then set x ̅ Uj where

j argmin g Un
RESI N

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 4/11

Letʼs say we want to find the minimizer of the function

over the interval . The R code below finds an approximation with the uniform sampling approach:

Suppose we observe a random sample from a distribution with probability density function given by

g <- function(x) x^2 - 3*sin(x*pi) + 2*cos(x*3*pi)
a <- -3
b <- 3
N <- 500
U <- runif(N,a,b)
x0 <- U[which.min(g(U))] # which.min is a handy function!

x <- seq(-3,3,length=500)
plot(g(x)~x,type = "l")
abline(v = x0,col="chartreuse",lwd = 2)
abline(v = U, col = rgb(0.545,0,0,0.1),lwd = .5)

Example 2

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 5/11

where is a parameter whose value is unknown. The density looks like this:

Then the maximum likelihood estimator of the parameter is found as the maximizer of the log-likelihood function

assuming we do not observe any exactly equal to zero. This function, for one particular sample of data,
looks like this:

f <- function(x,lam) ifelse(x == 0, 1/(pi*lam) , sin(x/lam)^2/x^2 * lam / pi)
x <- seq(-5,5,length=200)
fx <- f(x,lam = 1/2)
plot(fx ~ x,
 type = "l",
 ylab = "f(x)")

define the log-likelihood function for the parameter lambda based on sample data in X
ll <- function(lam,X) sum(log(f(X,lam)))

values below generated with lambda = 1/2
X <- scan(text="-0.50101 -2.269045 -0.04700094 2.663053 0.4210084 1.303026 -0.6850137 -1.09102

lamseq <- seq(.005,3,by=0.001)
ll_lamseq <- numeric(length(lamseq))

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 6/11

for(i in 1:length(lamseq)) ll_lamseq[i] <- ll(lam = lamseq[i],X)
plot(ll_lamseq~lamseq,
 type = "l",
 ylab="log-likelihood",
 xlab = "lambda")

a <- 0.01
b <- 3
N <- 500
U <- runif(N,a,b)
ll_U <- numeric(N)
for(i in 1:N) ll_U[i] <- ll(U[i],X)
x0 <- U[which.max(ll_U)] # which.max is great too :)

plot(ll_lamseq~lamseq,type = "l",
 xlab = "lambda",
 ylab = "log-likelihood")
abline(v = x0,col="chartreuse",lwd = 2)
abline(v = U, col = rgb(0.545,0,0,0.1),lwd = .5)

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 7/11

Consider minimizing the bivariate function

over the rectangle . We know that the function is minimized at , but suppose we did not
know this.

Example 3

h <- function(x,y){

 a <- (x*sin(20*y) + y*sin(20*x))^2*cosh(sin(10*x)*x)
 b <- (x*cos(10*y) - y*cos(10*x))^2*cosh(cos(20*y)*y)
 val <- a + b
 return(val)

}

x <- seq(-1,1,length=81)
y <- x
z <- outer(x,y,FUN=h)

par(mar=c(1.1,1.1,1.1,1.1))
persp(x,y,z,
 theta = 24,

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 8/11

In the bivariate case, we must generate as points uniformly distributed in the rectangle ,
which we demonstrate here:

[1] -0.1959214 0.1323608

When searching for the minimizer in a two-dimensional space, we need to generate a much larger number of points to
obtain an accurate approximation. In spaces with dimension higher than two, the number of samples needed becomes
so large that this method takes too much computational time to be practical.

Simulated annealing is an alternative to uniform sampling which is designed to seek the minimizer in a more
computationally e�icient way.

 phi = 30,
 cex.axis = 0.8,
 expand = 0.5,
 border = rgb(.545,0,0),
 box = F,
 lwd = .8)

h2 <- function(x) h(x[1],x[2])
N <- 1000
U <- matrix(runif(2*N,-1,1),nrow = N)
gU <- apply(U,1,h2)
x0 <- U[which.min(gU),]
x0

i EEE.mn xr4n

arPmiEimizeris

Xj Y

µ

qq.gg
T.n.in aeiba

6 an
92

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 9/11

The word annealing is used for the heating a cooling of a metal. Simulated annealing refers to a Monte Carlo method for
finding the minimizer of a function which is more carefully constructed than the uniform sampling approach. It goes like
this:

To find the minimizer of a objective function , choose an initial guess , an initial temperature , a step size , and a
number of iterations . Then do the following for :

1. Propose a new value , where represents a perturbation with, say, unit variance.
2. Compute . Then, if set (this means that if the proposed value decreases the

function we will keep it). On the other hand, if , set equal to with probability and equal
to with probability (this means that even if the proposed value does not decrease the
function but rather increases it, we may still keep it, but it is unlikely that we will keep it if the increase was large).

3. Update the temperature by setting .

The temperatures decrease across the iterations, so as the algorithm proceeds, it becomes less and less likely to
accept proposals which do not decrease the objective function.

In Step 1. one option for is to generate it from the standard Normal distribution. Note that this algorithm can also work
when takes vector-valued arguments, so we may be searching for the minimizer in a space with dimension greater than
1. In Step 3., one may update the temperatures according to some other rule—the point being that the temperatures
should decrease, so in the latter iterations one insists strongly that the objective function should not increase.

In Step 2. we can do an action “with probability” something by generating and doing the action if
is less than something.

The R code below defines a function which performs simulated annealing to search for the minimizer of a function over
an interval . Then simulated annealing is demonstrated for the same minimization as in Example 1 in the uniform
sampling section.

Note that the function defined below is a function which take as one of its arguments another function. This is something
new for us. The ... which appears in the list of arguments in the function definition stands in for any arguments which
may need to be passed along to the function put in for f . We will make use of the ... in the next example.

Simulated Annealing

Example

simann <- function(g,a,b,tmp,st,iter,...){

 x0 <- runif(1,a,b)
 vals <- numeric(iter)
 keep <- logical(iter)
 for(i in 1:iter){

 x1 <- x0 + st * rnorm(1) # generate candidate next value
 x1 <- a*(x1 < a) + b*(x1 > b) + x1*((x1 >= a) & (x1 <= b)) # keep value of x1 inside inter
 vals[i] <- x1

 g0 <- g(x0,...)
 g1 <- g(x1,...)

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 10/11

 d <- g1 - g0

 tmp <- tmp / log(i+1)
 ap <- exp(-d / tmp)

 if((d <= 0) | (runif(1) < ap)){

 x0 <- x1
 keep[i] <- T

 }

 }

 output <- list(x = x0,
 vals = vals,
 keep = keep)

}

g <- function(x) x^2 - 3*sin(x*pi) + 2*cos(x*3*pi)
simann_out <- simann(g,a=-3,b=3,tmp=100,st=1,iter=200)

make a plot
x <- seq(-3,3,length=500)
plot(g(x)~x,type = "l")
abline(v = simann_out$vals, col = ifelse(simann_out$keep,rgb(0,0,.545,.5),rgb(0.545,0,0,.1)))
abline(v = simann_out$x,col="chartreuse",lwd = 2)

9/11/25, 1:03 PM Monte Carlo methods – Computing in Statistics

localhost:6821/R_MCmethods.html 11/11

Practice

Practice writing code and anticipating the output of code with the following exercises.

Write code

Read code

